NAD+-dependent format dehydrogenase from the thermotolerant yeast ogataea parapolymorpha: properties and protein engineering of the n-terminal sequence

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Previously, the gene of formate dehydrogenase (FDH, EC 1.2.1.2) from the thermotolerant methylotrophic yeast Ogataea parapolymorpha DL 1 (OpaFDH) was cloned in our laboratory. The recombinant enzyme with an additional glycine amino acid residue (OpaFDH_GK) was obtained in Escherichia coli cells in an active and soluble form with a yield of more than 1 g per liter of medium. In the present work, a detailed comparison of this enzyme with FDH from other sources was carried out. Among eukaryotic formate dehydrogenases, OpaFDH has the highest thermal stability. To elucidate the effect of the N-terminal residue on the properties of the enzyme, OpaFDH_K (identical to natural) and OpaFDH_AK variants containing an additional Ala residue at the N-terminus were also obtained. It was shown that the addition of an Ala residue to the N-terminus reduces the rate constant of thermal inactivation four times compared with the addition of a Gly residue. The addition of six more histidine residues to the N-terminus of OpaFDH_AK leads to an acceleration of purification, practically does not affect the kinetic parameters, but somewhat reduces the temperature stability, which, however, can be restored to the level of OpaFDH_AK by adding 0.5 M NaCl.

About the authors

A. A Pometun

Bach Institute of Biochemistry, Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences;Faculty of Chemistry, Lomonosov Moscow State University

Email: aapometun@gmail.com
119071 Moscow, Russia;119991 Moscow, Russia

L. A Shaposhnikov

Bach Institute of Biochemistry, Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences;Faculty of Chemistry, Lomonosov Moscow State University

119071 Moscow, Russia;119991 Moscow, Russia

S. A Zubanova

Faculty of Chemistry, Lomonosov Moscow State University

119991 Moscow, Russia

R. P Kovalevskii

Faculty of Chemistry, Lomonosov Moscow State University

119991 Moscow, Russia

D. L Atroshenko

Bach Institute of Biochemistry, Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences;Faculty of Chemistry, Lomonosov Moscow State University

119071 Moscow, Russia;119991 Moscow, Russia

E. V Pometun

Sechenov First Moscow State Medical University

119991 Moscow, Russia

S. S Savin

Bach Institute of Biochemistry, Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences;Faculty of Chemistry, Lomonosov Moscow State University

119071 Moscow, Russia;119991 Moscow, Russia

V. I Tishkov

Bach Institute of Biochemistry, Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences;Faculty of Chemistry, Lomonosov Moscow State University

Email: vitishkov@gmail.com
119071 Moscow, Russia;119991 Moscow, Russia

References

  1. Tishkov, V. I., and Popov, V. O. (2004) Catalytic mechanism and application of formate dehydrogenase, Biochemistry (Moscow), 69, 1252-1267, doi: 10.1007/s105410050071x.
  2. Tishkov, V. I., and Popov, V. O. (2006) Protein engineering of formate dehydrogenase, Biomol. Eng., 23, 89-110, doi: 10.1016/j.bioeng.2006.02.003.
  3. Alekseeva, A. A., Savin, S. S., and Tishkov, V. I (2011) NAD+-dependent formate dehydrogenase from plants, Acta Naturae, 3, 38-54, doi: 10.32607/20758251-2011-3-4-38-54.
  4. Tishkov, V. I., Pometun, A. A., and Savin, S. S. (2023) Formate dehydrogenase: from NAD(P)H regeneration to targeting pathogen biofilms, composing highly efficient hybrid biocatalysts and atmospheric CO2 fixation, Moscow Univ. Chem. Bull., 78, 151-169, doi: 10.3103/S0027131423040077.
  5. Kragl, U., Kruse, W., Hummel, W., and Wandrey, C. (1996) Enzyme engineering aspects of biocatalysis: cofactor regeneration as example, Biotechnol. Bioeng., 52, 309-319, doi: 10.1002/(SICI)1097-0290.
  6. Tishkov, V. I., Galkin, A. G., Marchenko, G. N., Tsygankov, Y. D., and Egorov, A. M. (1993) Formate dehydrogenase from methylotrophic bacterium Pseudomonas sp. 101: gene cloning and expression in Escherichia coli, Biotechnol. Appl. Biochem., 18, 201-207.
  7. Yu, S., Zhu, L., Zhou, C., An, T., Zhang, T., Jiang, B., and Mu, W. (2014) Promising properties of a formate dehydrogenase from a methanol-assimilating yeast Ogataea parapolymorpha DL-1 in His-tagged form, Appl. Microbiol. Biotechnol., 98, 1621-1630, doi: 10.1007/s00253-013-4996-5.
  8. Tishkov, V. I., Pometun, A. A., Stepashkina, A. V., Fedorchuk, V. V., Zarubina, S. A., Kargov, I. S., Atroshenko, D. L., Parshin, P. D., Kovalevski, R. P., Boiko, K. M., Eldarov, M. A., D'Oronzo, E., Facheris, S., Secundo, F., and Savin, S. S. (2018) Rational design of practically important enzymes, Moscow Univ. Chem. Bull., 73, 1-6, doi: 10.3103/S0027131418020153.
  9. Pometun, A. A., Kleymenov, S. Y., Zarubina, S. A., Kargov, I. S., Parshin, P. D., Sadykhov, E. G., Savin, S. S., and Tishkov, V. I. (2018) Comparison of thermal Stability of new formate dehydrogenases by differential scanning calorimetry, Moscow Univ. Chem. Bull., 73, 80-84, doi: 10.3103/S002713141802013X.
  10. Pometun, A. A., Boyko, K. M., Zubanova, S. A., Nikolaeva, A. Yu., Atroshenko, D. L., Savin, S. S., and Tishkov, V. I. (2021) Preparation of recombinant formate dehydrogenase from thermotolerant yeast Ogataea parapolymorpha and crystallization of its apo- and holo-forms, Moscow Univ. Chem. Bull., 76, 49-55, doi: 10.3103/S0027131421010120.
  11. Rojkova, A. M., Galkin, A. G., Kulakova, L. B., Serov, A. E., Savitsky, P. A., Fedorchuk, V. V., and Tishkov, V. I. (1999) Bacterial formate dehydrogenase. Increasing the enzyme thermal stability by hydrophobization of alpha-helices, FEBS Lett., 445, 183-188, doi: 10.1016/S0014-5793(99)00127-1.
  12. Досон Р., Эллиот Д., Эллиот У., Джонс К. (1991) Справочник биохимика, Мир, Москва, ISBN 5-03-001032-7.
  13. Varshavsky, A. (2011) The N-end rule pathway and regulation by proteolysis, Protein Sci., 20, 1298-1345, doi: 10.1002/pro.666.
  14. Klyushnichenko, V., Tishkov, V., and Kula, M.-R. (1997) Rapid SDS-gel capillary electrophoresis for the analysis of recombinant NADP+-dependent formate dehydrogenase during expression in E. coli cells and purification, J. Biotechnol., 58, 187-195, doi: 10.1016/S0168-1656(97)00149-1.
  15. Pometun, A. A., Parshin, P. D., Galanicheva, N. P., Uporov, I. V., Atroshenko, D. L., Savin, S. S., and Tishkov, V. I. (2020) Influence of His6 sequence on the properties of formate dehydrogenase from bacterium Pseudomonas sp. 101, Moscow Univ. Chem. Bull., 75, 250-257, doi: 10.3103/S0027131420040057.
  16. Shaposhnikov, L. A., Savin, S. S., Atroshenko, D. L., Chubar, T. A., Pometun, E. V., Tishkov, V. I., and Pometun, A. A. (2023) Engineering the N-terminal sequence of Glycine max soybean formate dehydrogenase, Moscow Univ. Chem. Bull., 78, 220-230, doi: 10.3103/S0027131423040053.
  17. Hatrongjit, R., and Packdibamrung, K. (2010) A novel NADP-dependent formate dehydrogenase from Burkholderia stabilis 15516: Screening, purification and characterization, Enzyme Microb. Technol., 46, 557-561, doi: 10.1016/j.enzmictec.2010.03.002.
  18. Ding, H. T., Liu, D. F., Li, Z. L., Du, Y. Q., Xu, X. H., and Zhao, Y. H. (2011) Characterization of a thermally stable and organic solvent-adaptative NAD+-dependent formate dehydrogenase from Bacillus sp. F1, J. Appl. Microbiol., 111, 1075-1085, doi: 10.1111/j.1365-2672.2011.05124.x.
  19. Andreadeli, A., Flemetakis, E., Axarli, I., Dimou, M., Udvardi, M. K., Katinakis, P., and Labrou, N. E. (2009) Cloning and characterization of Lotus japonicus formate dehydrogenase: a possible correlation with hypoxia, Biochim. Biophys. Acta, 1794, 976-984, doi: 10.1016/j.bbapap.2009.02.009.
  20. Pometun, A. A., Voinova, N. S., Pometun, E. V., Savin, S. S., and Tishkov, V. I. (2018) Effect of medium pH and ion strength on the thermal stability of plant formate dehydrogenases, Moscow Univ. Chem. Bull., 73, 199-203, doi: 10.3103/S0027131418040077.
  21. Cornish-Bowden, A. (2012) in Fundamentals of Enzyme Kinetic 4th Ed., Wiley-Blackwell, Singapore, p. 18-20.
  22. Tishkov, V. I., Goncharenko, K. V., Alekseeva, A. A., Kleymenov, S. Yu, and Savin, S. S. (2015) Role of a structurally equivalent phenylalanine residue in catalysis and thermal stability of formate dehydrogenases from different sources, Biochemistry (Moscow), 80, 1690-1700, doi: 10.1134/S0006297915130052.

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies