Effect of biotin starvation on gene expression in Komagataella phaffii cells

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Methylotrophic yeast Komagataella phaffii are widely used in biotechnology as a host for recombinant protein production. Due to the practical significance of this yeast, it is extremely important to properly select the cultivation conditions and optimize the media composition. In this study the effect of biotin starvation on K. phaffii gene expression was investigated at transcriptomic level. It was demonstrated, that K. phaffii cell response to biotin deficiency strongly depends on the carbon source in the medium. In media containing glycerol, biotin deficiency led to activation of genes involved in biotin metabolism, glyoxylate cycle and synthesis of acetyl-CoA in cytoplasm, as well as repression of genes, involved in lipo- and gluconeogenesis. In methanol containing media, biotin deficiency primarily led to repression of genes, involved in protein synthesis, and activation of cell response to oxidative stress.

About the authors

A. S Makeeva

St. Petersburg State University

199034 Saint Petersburg, Russia

A. V Sidorin

St. Petersburg State University

199034 Saint Petersburg, Russia

V. V Ishtuganova

St. Petersburg State University

199034 Saint Petersburg, Russia

M. V Padkina

St. Petersburg State University

199034 Saint Petersburg, Russia

A. M Rumyantsev

St. Petersburg State University

Email: rumyantsev-am@mail.ru
199034 Saint Petersburg, Russia

References

  1. Karbalaei, M., Rezaee, S. A., and Farsiani, H. (2020) Pichia pastoris: a highly successful expression system for optimal synthesis of heterologous proteins, J. Cell. Physiol., 235, 5867-5881, doi: 10.1002/jcp.29583.
  2. Cregg J. M. (2007) Introduction: distinctions between Pichia pastoris and other expression systems, Methods Mol. Biol., 389, 1-10, doi: 10.1007/978-1-59745-456-8_1.
  3. Heistinger, L., Gasser, B., and Mattanovich, D. (2020) Microbe profile: Komagataella phaffii: a methanol devouring biotech yeast formerly known as Pichia pastoris, Microbiology, 166, 614-616, doi: 10.1099/mic.0.000958.
  4. Carneiro, C. V. G. C., Serra, L. A., Pacheco, T. F., Ferreira, L. M. M., Brandão, L. T. D., de Moura Freitas, M. N., Trichez, D., and Almeida, J. R. M. (2022) Advances in Komagataella phaffii engineering for the production of renewable chemicals and proteins, Fermentation, 8, 575, doi: 10.3390/fermentation8110575.
  5. Hartner, F. S., and Glieder, A. (2006) Regulation of methanol utilisation pathway genes in yeasts, Microb. Cell Fact., 5, 1-21, doi: 10.1186/1475-2859-5-39.
  6. Ergün, B. G., Berrios, J., Binay, B., and Fickers, P. (2021) Recombinant protein production in Pichia pastoris: from transcriptionally redesigned strains to bioprocess optimization and metabolic modelling, FEMS Yeast Res., 21, foab057, doi: 10.1093/femsyr/foab057.
  7. Ghosalkar, A., Sahai, V., and Srivastava, A. (2008) Optimization of chemically defined medium for recombinant Pichia pastoris for biomass production, Bioresour. Technol., 99, 7906-7910, doi: 10.1016/j.biortech.2008.01.059.
  8. Joseph, J. A., Akkermans, S., Cornillie, E., Deberlanger, J., and Van Impe, J. F. M. (2023) Optimal culture medium selection and supplementation for recombinant thaumatin II production by Komagataella phaffii, Food Bioprod. Process, 139, 190-203, doi: 10.1016/j.fbp.2023.04.001.
  9. Matthews, C. B., Kuo, A., Love, K. R., and Love, J. C. (2018) Development of a general defined medium for Pichia pastoris, Biotechnol. Bioeng., 115, 103-113, doi: 10.1002/bit.26440.
  10. Rumiantsev, A. M., Padkina, M. V., and Sambuk, E. V. (2013) Effect of nitrogen source on gene expression of first steps of methanol utilization pathway in Pichia pastoris, Genetika, 49, 454-460, doi: 10.7868/S0016675813040115.
  11. Rumjantsev, A. M., Bondareva, O. V., Padkina, M. V., and Sambuk, E. V. (2014) Effect of nitrogen source and inorganic phosphate concentration on methanol utilization and PEX genes expression in Pichia pastoris, ScientificWorldJournal, 2014, 1-9, doi: 10.1155/2014/743615.
  12. Ortega-Cuellar, D., Hernandez-Mendoza, A., Moreno-Arriola, E., Carvajal-Aguilera, K., Perez-Vazquez, V., Gonzalez-Alvarez, R., and Velazquez-Arellano, A. (2010) Biotin starvation with adequate glucose provision causes paradoxical changes in fuel metabolism gene expression similar in rat (Rattus norvegicus), nematode (Caenorhabditis elegans) and yeast (Saccharomyces cerevisiae), J. Nutrigenet. Nutrigenomics, 3, 18-30, doi: 10.1159/000318054.
  13. Perli, T., Wronska, A. K., Ortiz-Merino, R. A., Pronk, J. T., and Daran, J. M. (2020) Vitamin requirements and biosynthesis in Saccharomyces cerevisiae, Yeast, 37, 283-304, doi: 10.1002/yea.3461.
  14. Hall, C., and Dietrich, F. S. (2007) The reacquisition of biotin prototrophy in Saccharomyces cerevisiae involved horizontal gene transfer, gene duplication and gene clustering, Genetics, 177, 2293-2307, doi: 10.1534/genetics.107.074963.
  15. Gasser, B., Dragosits, M., and Mattanovich, D. (2010) Engineering of biotin-prototrophy in Pichia pastoris for robust production processes, Metab. Eng., 12, 573-580, doi: 10.1016/j.ymben.2010.07.002.
  16. Bolger, A. M., Lohse, M., and Usadel, B. (2014) Trimmomatic: a flexible trimmer for Illumina sequence data, Bioinformatics, 30, 2114-2120, doi: 10.1093/bioinformatics/btu170.
  17. Leggett, R. M., Ramirez-Gonzalez, R. H., Clavijo, B. J., Waite, D., and Davey, R. P. (2013) Sequencing quality assessment tools to enable data-driven informatics for high throughput genomics, Front. Genet., 4, 288, doi: 10.3389/fgene.2013.00288.
  18. Kim, D., Paggi, J. M., Park, C., Bennett, C., and Salzberg, S. L. (2019) Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype, Nat. Biotechnol., 37, 907-915, doi: 10.1038/s41587-019-0201-4.
  19. Danecek, P., Bonfield, J. K., Liddle, J., Marshall, J., Ohan, V., Pollard, M. O., Whitwham, A., Keane, T., McCarthy, S. A., Davies, R. M., and Li, H. (2021) Twelve years of SAMtools and BCFtools, GigaScience, 10, giab008, doi: 10.1093/gigascience/giab008.
  20. Liao, Y., Smyth, G. K., and Shi, W. (2014) featureCounts: an efficient general purpose program for assigning sequence reads to genomic features, Bioinformatics, 30, 923-930, doi: 10.1093/bioinformatics/btt656.
  21. Love, M. I., Huber, W., and Anders, S. (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2, Genome Biol., 15, 550, doi: 10.1186/s13059-014-0550-8.
  22. Zhang, C., Ma, Y., Miao, H., Tang, X., Xu, B., Wu, Q., Mu, Y., and Huang, Z. (2020) Transcriptomic analysis of Pichia pastoris (Komagataella phaffii) GS115 during heterologous protein production using a high-cell-density fed-batch cultivation strategy, Front. Microbiol., 11, 463, doi: 10.3389/fmicb.2020.00463.
  23. Brady, J. R., Whittaker, C. A., Tan, M. C., Kristensen, D. L., 2nd, Ma, D., Dalvie, N. C., Love, K. R., and Love, J. C. (2020) Comparative genome-scale analysis of Pichia pastoris variants informs selection of an optimal base strain, Biotechnol. Bioeng., 117, 543-555, doi: 10.1002/bit.27209.
  24. Love, K. R., Shah, K. A., Whittaker, C. A., Wu, J., Bartlett, M. C., Ma, D., Leeson, R. L., Priest, M., Borowsky, J., Young, S. K., and Love, J. C. (2016) Comparative genomics and transcriptomics of Pichia pastoris, BMC Genomics, 17, 550, doi: 10.1186/s12864-016-2876-y.
  25. Pirner, H. M., and Stolz, J. (2006) Biotin sensing in Saccharomyces cerevisiae is mediated by a conserved DNA element and requires the activity of biotin-protein ligase, J. Biol. Chem., 281, 12381-12389, doi: 10.1074/jbc.M511075200.
  26. Weider, M., Machnik, A., Klebl, F., and Sauer, N. (2006) Vhr1p, a new transcription factor from budding yeast, regulates biotin-dependent expression of VHT1 and BIO5, J. Biol. Chem., 281, 13513-13524, doi: 10.1074/jbc.M512158200.
  27. Kowalska, E., Kujda, M., Wolak, N., and Kozik, A. (2012) Altered expression and activities of enzymes involved in thiamine diphosphate biosynthesis in Saccharomyces cerevisiae under oxidative and osmotic stress, FEMS Yeast Res., 12, 534-546, doi: 10.1111/j.1567-1364.2012.00804.x.
  28. Wolak, N., Kowalska, E., Kozik, A., and Rapala-Kozik, M. (2014) Thiamine increases the resistance of baker's yeast Saccharomyces cerevisiae against oxidative, osmotic and thermal stress, through mechanisms partly independent of thiamine diphosphate-bound enzymes, FEMS Yeast Res., 14, 1249-1262, doi: 10.1111/1567-1364.12218.
  29. Duntze, W., Neumann, D., Gancedo, J. M., Atzpodien, W., and Holzer, H. (1969) Studies on the regulation and localization of the glyoxylate cycle enzymes in Saccharomyces cerevisiae, Eur. J. Biochem., 10, 83-89, doi: 10.1111/j.1432-1033.1969.tb00658.x.
  30. Berg, M. A., and Steensma, H. Y. (1995) ACS2, a Saccharomyces cerevisiae gene encoding acetyl-coenzyme A synthetase, essential for growth on glucose, Eur. J. Biochem., 231, 704-713, doi: 10.1111/j.1432-1033.1995.tb20751.x.
  31. Takahashi, H., McCaffery, J. M., Irizarry, R. A., and Boeke, J. D. (2006) Nucleocytosolic acetyl-coenzyme A synthetase is required for histone acetylation and global transcription, Mol. Cell, 23, 207-217, doi: 10.1016/j.molcel.2006.05.040.
  32. Strijbis, K., and Distel, B. (2010) Intracellular acetyl unit transport in fungal carbon metabolism, Eukaryot. Cell, 9, 1809-1815, doi: 10.1128/EC.00172-10.
  33. Madsen, C. T., Sylvestersen, K. B., Young, C., Larsen, S. C., Poulsen, J. W., Andersen, M. A., Palmqvist, E. A., Hey-Mogensen, M., Jensen, P. B., Treebak, J. T., Lisby, M., and Nielsen, M. L. (2015) Biotin starvation causes mitochondrial protein hyperacetylation and partial rescue by the SIRT3-like deacetylase Hst4p, Nat. Commun., 6, 7726, doi: 10.1038/ncomms8726.
  34. Kurita, O., and Nishida, Y. (1999) Involvement of mitochondrial aldehyde dehydrogenase ALD5 in maintenance of the mitochondrial electron transport chain in Saccharomyces cerevisiae, FEMS Microbiol Lett., 181, 281-287, doi: 10.1111/j.1574-6968.1999.tb08856.x.
  35. Kumar, N. V., and Rangarajan, P. N. (2011) Catabolite repression of phosphoenolpyruvate carboxykinase by a zinc finger protein under biotinand pyruvate carboxylase-deficient conditions in Pichia pastoris, Microbiology, 157, 3361-3369, doi: 10.1099/mic.0.053488-0.
  36. Kumar, N. V., and Rangarajan, P. N. (2012) The zinc finger proteins Mxr1p and repressor of phosphoenolpyruvate carboxykinase (ROP) have the same DNA binding specificity but regulate methanol metabolism antagonistically in Pichia pastoris, J. Biol. Chem., 287, 34465-34473, doi: 10.1074/jbc.M112.365304.
  37. Kern, A., Hartner, F. S., Freigassner, M., Spielhofer, J., Rumpf, C., Leitner, L., Fröhlich, K. U., and Glieder, A. (2007) Pichia pastoris ‘just in time' alternative respiration, Microbiology, 153, 1250-1260, doi: 10.1099/mic.0.2006/001404-0.
  38. DeRisi, J. L., Iyer, V. R., and Brown, P. O. (1997) Exploring the metabolic and genetic control of gene expression on a genomic scale, Science, 278, 680-686, doi: 10.1126/science.278.5338.680.
  39. Gasch, A. P., Spellman, P. T., Kao, C. M., Carmel-Harel, O., Eisen, M. B., Storz, G., Botstein, D., and Brown, P. O. (2000) Genomic expression programs in the response of yeast cells to environmental changes, Mol. Biol. Cell, 11, 4241-4257, doi: 10.1091/mbc.11.12.4241.
  40. Gasch, A. P. (2003) "The environmental stress response: a common yeast response to environmental stresses", in Yeast Stress Responses (Hohmann, S., and Mager, W. H., eds) Vol. 1, Springer, Berlin, pp. 11-70.
  41. Couderc, R., and Baretti, J. (1980) Oxidation of methanol by the yeast Pichia pastoris. Purification and properties of alcohol oxidase, Agrie. Biol. Chem., 44, 2279-2289, doi: 10.1080/00021369.1980.10864320.
  42. Avery, A. M., and Avery, S. V. (2001) Saccharomyces cerevisiae expresses three phospholipid hydroperoxide glutathione peroxidases, J. Biol. Chem., 276, 33730-33735, doi: 10.1074/jbc.M105672200.
  43. Lin, N. X., He, R. Z., Xu, Y., and Yu, X. W. (2021) Oxidative stress tolerance contributes to heterologous protein production in Pichia pastoris, Biotechnol. Biofuels, 14, 160, doi: 10.1186/s13068-021-02013-w.

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies