Reconstitution of calcium channel protein Orai3 into liposomes for functional studies

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Store-operated calcium entry (SOCE) is the main mechanism for the Ca2+ influx in non-excitable cells. The two major components of SOCE are stromal interaction molecule 1 (STIM1) in the endoplasmic reticulum and Ca2+ release-activated Ca2+ channel (CRAC) Orai on the plasma membrane. SOCE requires interaction between STIM1 and Orai. Mammals have three Orai homologs: Orai1, Orai2, and Orai3. Although Orai1 has been widely studied and proven to be essential for numerous cellular processes, Orai3 has also attracted a significant attention recently. The gating and activation mechanisms of Orai3 have yet to be fully elucidated. Here, we expressed, purified, and reconstituted Orai3 protein into liposomes and investigated its orientation and oligomeric state in the resulting proteoliposomes. STIM1 interacted with the Orai3-containing proteoliposomes and mediated calcium release from them, suggesting that the Orai3 channel was functional and that recombinant STIM1 could directly open the Orai3 channel in vitro. The developed in vitro calcium release system could be used to study the structure, function, and pharmacology of Orai3 channel.

About the authors

Ch. Liang

Hubei University of Medicine

442000 Shiyan, China

F. Wu

Hubei University of Medicine;Nankai University

Email: wufuyun@hbmu.edu.cn
442000 Shiyan, China;300071 Tianjin, China

References

  1. Putney, J. W., Jr. (1986) A model for receptor-regulated calcium entry, Cell Calcium, 7, 1-12, doi: 10.1016/0143-4160(86)90026-6.
  2. Putney, J. W., Jr., Broad, L. M., Braun, F. J., Lievremont, J. P., and Bird, G. S. (2001) Mechanisms of capacitative calcium entry, J. Cell Sci., 114, 2223-2229, doi: 10.1242/jcs.114.12.2223.
  3. Luik, R. M., Wu, M. M., Buchanan, J., and Lewis, R. S. (2006) The elementary unit of store-operated Ca2+ entry: local activation of CRAC channels by STIM1 at ER-plasma membrane junctions, J. Cell Biol., 174, 815-825, doi: 10.1083/jcb.200604015.
  4. Baba, Y., Hayashi, K., Fujii, Y., Mizushima, A., Watarai, H., Wakamori, M., Numaga, T., Mori, Y., Iino, M., Hikida, M., and Kurosaki, T. (2006) Coupling of STIM1 to store-operated Ca2+ entry through its constitutive and inducible movement in the endoplasmic reticulum, Proc. Natl. Acad. Sci. USA, 103, 16704-16709, doi: 10.1073/pnas.0608358103.
  5. Hogan, P. G., and Rao, A. (2015) Store-operated calcium entry: MECHANISMS and modulation, Biochem. Biophys. Res. Commun., 460, 40-49, doi: 10.1016/j.bbrc.2015.02.110.
  6. Lunz, V., Romanin, C., and Frischauf, I. (2019) STIM1 activation of Orai1, Cell Calcium, 77, 29-38, doi: 10.1016/j.ceca.2018.11.009.
  7. Lacruz, R. S., and Feske, S. (2015) Diseases caused by mutations in ORAI1 and STIM1, Ann. NY Acad. Sci., 1356, 45-79, doi: 10.1111/nyas.12938.
  8. Feske, S., Gwack, Y., Prakriya, M., Srikanth, S., Puppel, S. H., Tanasa, B., Hogan, P. G., Lewis, R. S., Daly, M., and Rao, A. (2006) A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function, Nature, 441, 179-185, doi: 10.1038/nature04702.
  9. Lian, J., Cuk, M., Kahlfuss, S., Kozhaya, L., Vaeth, M., Rieux-Laucat, F., Picard, C., Benson, M. J., Jakovcevic, A., Bilic, K., Martinac, I., Stathopulos, P., Kacskovics, I., Vraetz, T., Speckmann, C., Ehl, S., Issekutz, T., Unutmaz, D., and Feske, S. (2018) ORAI1 mutations abolishing store-operated Ca2+ entry cause anhidrotic ectodermal dysplasia with immunodeficiency, J. Allergy Clin. Immunol., 142, 1297-1310.e1211, doi: 10.1016/j.jaci.2017.10.031.
  10. Hoth, M., and Niemeyer, B. A. (2013) The neglected CRAC proteins: Orai2, Orai3, and STIM2, Curr. Top. Membr., 71, 237-271, doi: 10.1016/b978-0-12-407870-3.00010-x.
  11. Zhang, X., Xin, P., Yoast, R. E., Emrich, S. M., Johnson, M. T., Pathak, T., Benson, J. C., Azimi, I., Gill, D. L., Monteith, G. R., and Trebak, M. (2020) Distinct pharmacological profiles of ORAI1, ORAI2, and ORAI3 channels, Cell Calcium, 91, 102281, doi: 10.1016/j.ceca.2020.102281.
  12. Shuba, Y. M. (2019) Ca2+ channel-forming ORAI proteins: cancer foes or cancer allies? Exp. Oncol., 41, 200-206, doi: 10.32471/exp-oncology.2312-8852.vol-41-no-3.13473.
  13. Hou, X., Outhwaite, I. R., Pedi, L., and Long, S. B. (2020) Cryo-EM structure of the calcium release-activated calcium channel Orai in an open conformation, eLife, 9, e62772, doi: 10.7554/eLife.62772.
  14. Stathopulos, P. B., Schindl, R., Fahrner, M., Zheng, L., Gasmi-Seabrook, G. M., Muik, M., Romanin, C., and Ikura, M. (2013) STIM1/Orai1 coiled-coil interplay in the regulation of store-operated calcium entry, Nat. Commun., 4, 2963, doi: 10.1038/ncomms3963.
  15. Yeung, P. S., Yamashita, M., and Prakriya, M. (2020) Molecular basis of allosteric Orai1 channel activation by STIM1, J. Physiol., 598, 1707-1723, doi: 10.1113/jp276550.
  16. Yen, M., Lokteva, L. A., and Lewis, R. S. (2016) Functional analysis of Orai1 concatemers supports a hexameric stoichiometry for the CRAC channel, Biophys. J., 111, 1897-1907, doi: 10.1016/j.bpj.2016.09.020.
  17. Lewis, R. S. (2011) Store-operated calcium channels: new perspectives on mechanism and function, Cold Spring Harb. Perspect. Biol., 3, a003970, doi: 10.1101/cshperspect.a003970.
  18. Riva, B., Pessolano, E., Quaglia, E., Cordero-Sanchez, C., Bhela, I. P., Topf, A., Serafini, M., Cox, D., Harris, E., Garibaldi, M., Barresi, R., Pirali, T., and Genazzani, A. A. (2022) STIM1 and ORAI1 mutations leading to tubular aggregate myopathies are sensitive to the Store-operated Ca2+-entry modulators CIC-37 and CIC-39, Cell Calcium, 105, 102605, doi: 10.1016/j.ceca.2022.102605.
  19. Berna-Erro, A., Jardan, I., Smani, T., and Rosado, J. A. (2016) Regulation of platelet function by Orai, STIM and TRP, Adv. Exp. Med. Biol., 898, 157-181, doi: 10.1007/978-3-319-26974-0_8.
  20. Prakriya, M., Feske, S., Gwack, Y., Srikanth, S., Rao, A., and Hogan, P. G. (2006) Orai1 is an essential pore subunit of the CRAC channel, Nature, 443, 230-233, doi: 10.1038/nature05122.
  21. Niu, L., Wu, F., Li, K., Li, J., Zhang, S. L., Hu, J., and Wang, Q. (2020) STIM1 interacts with termini of Orai channels in a sequential manner, J. Cell Sci., 133, jcs239491, doi: 10.1242/jcs.239491.
  22. Bergsmann, J., Derler, I., Muik, M., Frischauf, I., Fahrner, M., Pollheimer, P., Schwarzinger, C., Gruber, H. J., Groschner, K., and Romanin, C. (2011) Molecular determinants within N terminus of Orai3 protein that control channel activation and gating, J. Biol. Chem., 286, 31565-31575, doi: 10.1074/jbc.M111.227546.
  23. Shuttleworth, T. J. (2012) Orai3 - the "exceptional" Orai? J. Physiol., 590, 241-257, doi: 10.1113/jphysiol.2011.220574.
  24. Thompson, J., Mignen, O., and Shuttleworth, T. J. (2010) The N-terminal domain of Orai3 determines selectivity for activation of the store-independent ARC channel by arachidonic acid, Channels, 4, 398-410, doi: 10.4161/chan.4.5.13226.
  25. Zhang, S. L., Kozak, J. A., Jiang, W., Yeromin, A. V., Chen, J., Yu, Y., Penna, A., Shen, W., Chi, V., and Cahalan, M. D. (2008) Store-dependent and -independent modes regulating Ca2+ release-activated Ca2+ channel activity of human Orai1 and Orai3, J. Biol. Chem., 283, 17662-17671, doi: 10.1074/jbc.M801536200.
  26. Zhang, X., Gonzalez-Cobos, J. C., Schindl, R., Muik, M., Ruhle, B., Motiani, R. K., Bisaillon, J. M., Zhang, W., Fahrner, M., Barroso, M., Matrougui, K., Romanin, C., and Trebak, M. (2013) Mechanisms of STIM1 activation of store-independent leukotriene C4-regulated Ca2+ channels, Mol. Cell. Biol., 33, 3715-3723, doi: 10.1128/mcb.00554-13.
  27. Motiani, R. K., Abdullaev, I. F., and Trebak, M. (2010) A novel native store-operated calcium channel encoded by Orai3: selective requirement of Orai3 versus Orai1 in estrogen receptor-positive versus estrogen receptor-negative breast cancer cells, J. Biol. Chem., 285, 19173-19183, doi: 10.1074/jbc.M110.102582.
  28. Ay, A. S., Benzerdjeb, N., Sevestre, H., Ahidouch, A., and Ouadid-Ahidouch, H. (2013) Orai3 constitutes a native store-operated calcium entry that regulates non small cell lung adenocarcinoma cell proliferation, PLoS One, 8, e72889, doi: 10.1371/journal.pone.0072889.
  29. Holzmann, C., Kilch, T., Kappel, S., Armbraster, A., Jung, V., Stöckle,, M., Bogeski, I., Schwarz, E. C., and Peinelt, C. (2013) ICRAC controls the rapid androgen response in human primary prostate epithelial cells and is altered in prostate cancer, Oncotarget, 4, 2096-2107, doi: 10.18632/oncotarget.1483.
  30. Gonzalez-Cobos, J. C., Zhang, X., Zhang, W., Ruhle, B., Motiani, R. K., Schindl, R., Muik, M., Spinelli, A. M., Bisaillon, J. M., Shinde, A. V., Fahrner, M., Singer, H. A., Matrougui, K., Barroso, M., Romanin, C., and Trebak, M. (2013) Store-independent Orai1/3 channels activated by intracrine leukotriene C4: role in neointimal hyperplasia, Circ. Res., 112, 1013-1025, doi: 10.1161/circresaha.111.300220.
  31. Motiani, R. K., Stolwijk, J. A., Newton, R. L., Zhang, X., and Trebak, M. (2013) Emerging roles of Orai3 in pathophysiology, Channels, 7, 392-401, doi: 10.4161/chan.24960.
  32. Rigaud, J. L. (2002) Membrane proteins: functional and structural studies using reconstituted proteoliposomes and 2-D crystals, Brazil. J. Med. Biol. Res., 35, 753-766, doi: 10.1590/s0100-879x2002000700001.
  33. Rigaud, J. L., and Lévy, D. (2003) Reconstitution of membrane proteins into liposomes, Methods Enzymol., 372, 65-86, doi: 10.1016/s0076-6879(03)72004-7.
  34. Hou, X., Pedi, L., Diver, M. M., and Long, S. B. (2012) Crystal structure of the calcium release-activated calcium channel Orai, Science, 338, 1308-1313, doi: 10.1126/science.1228757.
  35. Lee, H. B., Xu, L., and Meissner, G. (1994) Reconstitution of the skeletal muscle ryanodine receptor-Ca2+ release channel protein complex into proteoliposomes, J. Biol. Chem., 269, 13305-13312, doi: 10.1016/S0021-9258(17)36833-3.
  36. Lu, P., Liu, R., and Sharom, F. J. (2001) Drug transport by reconstituted P-glycoprotein in proteoliposomes. Effect of substrates and modulators, and dependence on bilayer phase state, Eur. J. Biochem., 268, 1687-1697, doi: 10.1046/j.1432-1033.2001.02041.x.
  37. Klein, U., and Fahrenholz, F. (1994) Reconstitution of the myometrial oxytocin receptor into proteoliposomes. Dependence of oxytocin binding on cholesterol, Eur. J. Biochem., 220, 559-567, doi: 10.1111/j.1432-1033.1994.tb18656.x.
  38. Zhou, Y., Meraner, P., Kwon, H. T., Machnes, D., Oh-hora, M., Zimmer, J., Huang, Y., Stura, A., Rao, A., and Hogan, P. G. (2010) STIM1 gates the store-operated calcium channel ORAI1 in vitro, Nat. Struct. Mol. Biol., 17, 112-116, doi: 10.1038/nsmb.1724.
  39. Liu, S., Hasegawa, H., Takemasa, E., Suzuki, Y., Oka, K., Kiyoi, T., Takeda, H., Ogasawara, T., Sawasaki, T., Yasukawa, M., and Maeyama, K. (2017) Efficiency and safety of CRAC inhibitors in human rheumatoid arthritis xenograft models, J. Immunol., 199, 1584-1595, doi: 10.4049/jimmunol.1700192.
  40. Shuttleworth, T. J. (2012) Orai channels - new insights, new ideas, J. Physiol., 590, 4155-4156, doi: 10.1113/jphysiol.2012.237552.
  41. Lis, A., Peinelt, C., Beck, A., Parvez, S., Monteilh-Zoller, M., Fleig, A., and Penner, R. (2007) CRACM1, CRACM2, and CRACM3 are store-operated Ca2+ channels with distinct functional properties, Curr. Biol., 17, 794-800, doi: 10.1016/j.cub.2007.03.065.
  42. Azimi, I., Milevskiy, M. J. G., Chalmers, S. B., Yapa, K., Robitaille, M., Henry, C., Baillie, G. J., Thompson, E. W., Roberts-Thomson, S. J., and Monteith, G. R. (2019) ORAI1 and ORAI3 in breast cancer molecular subtypes and the identification of ORAI3 as a hypoxia sensitive gene and a regulator of hypoxia responses, Cancers, 11, 208, doi: 10.3390/cancers11020208.
  43. Stauderman, K. A. (2018) CRAC channels as targets for drug discovery and development, Cell Calcium, 74, 147-159, doi: 10.1016/j.ceca.2018.07.005.

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies