Generation of a cell line selectively producing the functionally active OATP1B1 transporter

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The solute carrier organic anion transporter family member OATP1B1 is one of the most important transporter proteins which mediate the penetration of many endogenous substances and xenobiotics into hepatocytes. A model system providing the expression of the functional protein is needed to assess the interaction of OATP1B1 with various substances. Based on HEK293 cells, we obtained the HEK293-OATP1B1 cell line, permanently expressing the SLCO1B1 gene encoding the OATP1B1 transporter. Expression of the SLCO1B1 gene was confirmed by real-time PCR analysis and immunochemically. The functionality of the transporter was assessed by the transport of atorvastatin, which is a substrate of OATP1B1. Cells of the resulting cell line, which selectively express the functionally active recombinant OATP1B1 transporter, can be used to study its function and to test drugs for belonging to substrates, inducers, and inhibitors of OATP1B1 to assess the risks of drug-drug interactions.

About the authors

M. S Kotliarova

Bach Institute of Biochemistry, Federal Research Centre “Fundamentals of Biotechnology”, Russian Academy of Sciences

119071 Moscow, Russia

A. V Shchulkin

Ryazan State Medical University named after Academician I. P. Pavlov

390026 Ryazan, Russia

P. D Erokhina

Ryazan State Medical University named after Academician I. P. Pavlov

390026 Ryazan, Russia

P. Y Mylnikov

Ryazan State Medical University named after Academician I. P. Pavlov

390026 Ryazan, Russia

E. N Yakusheva

Ryazan State Medical University named after Academician I. P. Pavlov

390026 Ryazan, Russia

N. I Nadolinskaia

Bach Institute of Biochemistry, Federal Research Centre “Fundamentals of Biotechnology”, Russian Academy of Sciences

119071 Moscow, Russia

M. V Zamakhaev

Bach Institute of Biochemistry, Federal Research Centre “Fundamentals of Biotechnology”, Russian Academy of Sciences

119071 Moscow, Russia

A. V Goncharenko

Bach Institute of Biochemistry, Federal Research Centre “Fundamentals of Biotechnology”, Russian Academy of Sciences

Email: pylaevanna@gmail.com
119071 Moscow, Russia

References

  1. Vasiliou, V., Vasiliou, K., and Nebert, D. W. (2009) Human ATP-binding cassette (ABC) transporter family, Hum. Genomics, 3, 281-290, doi: 10.1186/1479-7364-3-3-281.
  2. Roth, M., Obaidat, A., and Hagenbuch, B. (2012) OATPs, OATs and OCTs: the organic anion and cation transporters of the SLCO and SLC22A gene superfamilies, Br. J. Pharmacol., 165, 1260-1287, doi: 10.1111/j.1476-5381.2011.01724.x.
  3. Liu, X. (2019) SLC family transporters, Adv. Exp. Med. Biol., 1141, 101-202, doi: 10.1007/978-981-13-7647-4_3.
  4. Hsiang, B., Zhu, Y., Wang, Z., Wu, Y., Sasseville, V., Yang, W. P., and Kirchgessner, T. G. (1999) A novel human hepatic organic anion transporting polypeptide (OATP2). Identification of a liver-specific human organic anion transporting polypeptide and identification of rat and human hydroxymethylglutaryl-CoA reductase inhibitor transporters, J. Biol. Chem., 274, 37161-37168, doi: 10.1074/jbc.274.52.37161.
  5. Van de Steeg, E., Stranecky, V., Hartmannova, H., Noskova, L., Hrebicek, M., Wagenaar, E., van Esch, A., de Waart, D. R., Oude Elferink R. P., Kenworthy, K. E., Sticova, E., al-Edreesi, M., Knisely, A. S., Kmoch, S., Jirsa, M., and Schinkel, A. H. (2012) Complete OA TPIBI and OA TPIB3 deficiency causes human Rotor syndrome by interrupting conjugated bilirubin reuptake into the liver, J. Clin. Invest., 122, 519-528, doi: 10.1172/JCI59526.
  6. Campbell, S. D., de Morais, S. M., and Xu, J. J. (2004) Inhibition of human organic anion transporting polypeptide OATP1B1 as a mechanism of drug-induced hyperbilirubinemia, Chem. Biol. Interact., 150, 179-187, doi: 10.1016/j.cbi.2004.08.008.
  7. Neuvonen, P., Niemi, M., and Backman, J. (2006) Drug interactions with lipid-lowering drugs: Mechanisms and clinical relevance, Clin. Pharmacol. Ther., 80, 565-581, doi: 10.1016/j.clpt.2006.09.003.
  8. Chen, C., Stock, J. L., Liu, X., Shi, J., Van Deusen, J. W., DiMattia, D. A., Dullea, R. G., and de Morais, S. M. (2008) Utility of a novel Oatplb2 knockout mouse model for evaluating the role of Oatp1b2 in the hepatic uptake of model compounds, Drug Metab. Dispos., 36, 1840-1845, doi: 10.1124/dmd.108.020594.
  9. Hirano, M., Maeda, K., Shitara, Y., and Sugiyama, Y. (2004) Contribution of OATP2 (OATP1B1) and OATP8 (OATP1B3) to the hepatic uptake of pitavastatin in humans, J. Pharmacol. Exp. Ther., 311, 139-146, doi: 10.1124/jpet.104.068056.
  10. Sudsakorn, S., Bahadduri, P., Fretland, J., and Lu, C. (2020) 2020 FDA drug-drug interaction guidance: a comparison analysis and action plan by pharmaceutical industrial scientists, Curr. Drug Metab., 6, 403-426, doi: 10.2174/1389200221666200620210522.
  11. Drug interaction studies (2022) URL: https://www.ema.europa.eu/en/documents/scientific-guideline/draft-ich-guideline-m12-drug-interaction-studies-step-2b_en.pdf.
  12. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 7, 248-254, doi: 10.1006/abio.1976.9999.
  13. Erokhina, P. D., Myl'nikov, P. Y., Ganina, S. O., Konyakhin, E. A., Shchul'kin, A. V., Slepnev, A. A., and Yakusheva, E. N. (2022) Development and validation of the quantitative determination of atorvastatin in HepG2 cell line using high-performance liquid chromatography with mass-spectrometric detection, I. P. Pavlov Russ. Med. Biol. Herald, 30, 149-158, doi: 10.17816/PAVLOVJ100986.
  14. Ahlin, G., Hilgendorf, C., Karlsson, J., Szigyarto, C. A. K., Uhlén, M., and Artursson, P. (2009) Endogenous gene and protein expression of drug-transporting proteins in cell lines routinely used in drug discovery programs, Drug Metab. Dispos., 37, 2275-2283, doi: 10.1124/dmd.109.028654.
  15. Ooi, A., Wong, A., Esau, L., Lemtiri-Chlieh, F., and Gehring, C. (2016) A guide to transient expression of membrane proteins in HEK-293 cells for functional characterization, Front. Physiol., 7, 300, doi: 10.3389/fphys.2016.00300.
  16. Sun, A. Q., Ponamgi, V. M., Boyer, J. L., and Suchy, F. J. (2008) Membrane trafficking of the human organic anion-transporting polypeptide C (hOATPC), Pharm. Res., 25, 463-474, doi: 10.1007/s11095-007-9399-9.
  17. Karlgren, M., Ahlin, G., Bergström, C. A., Svensson, R., Palm, J., and Artursson, P. (2012) In vitro and in silico strategies to identify OATP1B1 inhibitors and predict clinical drug-drug interactions, Pharm. Res., 29, 411-426, doi: 10.1007/s11095-011-0564-9.
  18. Amundsen, R., Christensen, H., Zabihyan, B., and Asberg, A. (2010) Cyclosporine A, but not tacrolimus, shows relevant inhibition of organic anion-transporting protein 1B1-mediated transport of atorvastatin, Drug Metab. Dispos., 38, 1499-1504, doi: 10.1124/dmd.110.032268.

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies