State-of-the-art approaches for heterologous expression of bispecific antibodies targeting solid tumors

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Bispecific antibodies (bsAbs) belong to the group of promising biotherapeutics, as their structural and functional features provide versatility. To put it simply, bsAbs bind two antigens or two epitopes on one antigen simultaneously, moreover, they are capable of directing effector immune cells to cancer cells and delivering payloads (radionuclides, toxic agents, and immunological payloads) to target cells, thus offering a broad spectrum of clinical applications. Current review is focused on bsAbs platform engineering technologies, current progress and prospects in utilization and selection of various heterologous expression systems for protein production. Furthermore we share our view on the future of the bsAbs development for solid tumor therapy.

About the authors

A. K Misorin

BIOCAD

198515 Strelna, Saint-Petersburg, Russia

D. O Chernyshova

BIOCAD

198515 Strelna, Saint-Petersburg, Russia

M. S Karbyshev

BIOCAD

Email: karbyshevms@biocad.ru
198515 Strelna, Saint-Petersburg, Russia

References

  1. Fougner, C., Cannon, J., The, L., Smith, J. F., and Leclerc, O. (2023) Herding in the drug development pipeline, Nat. Rev. Drug Discov., 22, 617-618, doi: 10.1038/d41573-023-00063-3.
  2. Vargason, A. M., Anselmo, A. C., and Mitragotri, S. (2021) The evolution of commercial drug delivery technologies, Nat. Biomed. Eng., 5, 951-967, doi: 10.1038/s41551-021-00698-w.
  3. Wang, Z., Wang, G., Lu, H., Li, H., Tang, M., and Tong, A. (2022) Development of therapeutic antibodies for the treatment of diseases, Mol. Biomed., 3, 35, doi: 10.1186/s43556-022-00100-4.
  4. Bayer, V. (2019) An overview of monoclonal antibodies, Semin. Oncol. Nurs., 35, 150927, doi: 10.1016/j.soncn.2019.08.006.
  5. Mach, J. P. (2017) Recombinant monoclonal antibodies, from tumor targeting to cancer immunotherapy: a critical overview [in Russian], Mol. Biol. (Mosk.), 51, 1024-1038, doi: 10.7868/S0026898417060131.
  6. Jin, H., Wang, L., and Bernards, R. (2023) Rational combinations of targeted cancer therapies: background, advances and challenges, Nat. Rev. Drug Discov., 22, 213-234, doi: 10.1038/s41573-022-00615-z.
  7. Schmidt, G., Guhl, M. M., Solomayer, E. F., Wagenpfeil, G., Hammadeh, M. E., Juhasz-Boess, I., Endrikat, J., Kasoha, M., and Bohle, R. M. (2022) Immunohistochemical assessment of PD-L1 expression using three different monoclonal antibodies in triple negative breast cancer patients, Arch. Gynecol. Obstet., 306, 1689-1695, doi: 10.1007/s00404-022-06529-w.
  8. Karbyshev, M. S., Grigoryeva, E. S., Volkomorov, V. V., Kremmer, E., Huber, A., Mitrofanova, I. V., Kaigorodova, E. V., Zavyalova, M. V., Kzhyshkowska, J. G., Cherdyntseva, N. V., and Choynzonov, E. L. (2018) Development of novel monoclonal antibodies for evaluation of transmembrane prostate androgen-induced protein 1 (TMEPAI) expression patterns in gastric cancer, Pathol. Oncol. Res., 24, 427-438, doi: 10.1007/s12253-017-0247-x.
  9. Parakh, S., Lee, S. T., Gan, H. K., and Scott, A. M. (2022) Radiolabeled antibodies for cancer imaging and therapy, Cancers (Basel), 14, 1454, doi: 10.3390/cancers14061454.
  10. Wei, W., Rosenkrans, Z. T., Liu, J., Huang, G., Luo, Q. Y., and Cai, W. (2020) ImmunoPET: concept, design, and applications, Chem. Rev., 120, 3787-3851, doi: 10.1021/acs.chemrev.9b00738.
  11. Goulet, D. R., and Atkins, W. M. (2020) Considerations for the design of antibody-based therapeutics, J. Pharm. Sci., 109, 74-103, doi: 10.1016/j.xphs.2019.05.031.
  12. Chiu, M. L., Goulet, D. R., Teplyakov, A., and Gilliland, G. L. (2019) Antibody structure and function: the basis for engineering therapeutics, Antibodies (Basel), 8, 55, doi: 10.3390/antib8040055.
  13. Elshiaty, M., Schindler, H., and Christopoulos, P. (2021) Principles and current clinical landscape of multispecific antibodies against cancer, Int. J. Mol. Sci., 22, 5632, doi: 10.3390/ijms22115632.
  14. Ma, J., Mo, Y., Tang, M., Shen, J., Qi, Y., Zhao, W., Huang, Y., Xu, Y., and Qian, C. (2021) Bispecific antibodies: from research to clinical application, Front. Immunol., 12, 626616, doi: 10.3389/fimmu.2021.626616.
  15. Husain, B., and Ellerman, D. (2018) Expanding the boundaries of biotherapeutics with bispecific antibodies, BioDrugs, 32, 441-464, doi: 10.1007/s40259-018-0299-9.
  16. Gera, N. (2022) The evolution of bispecific antibodies, Expert. Opin. Biol. Ther., 22, 945-949, doi: 10.1080/14712598.2022.2040987.
  17. Du, Y., and Xu, J. (2021) Engineered bifunctional proteins for targeted cancer therapy: prospects and challenges, Adv. Mater., 33, e2103114, doi: 10.1002/adma.202103114.
  18. Chen, S. W., and Zhang, W. (2021) Current trends and challenges in the downstream purification of bispecific antibodies, Antib. Ther., 4, 73-88, doi: 10.1093/abt/tbab007.
  19. Tripathi, N. K., and Shrivastava, A. (2019) Recent developments in bioprocessing of recombinant proteins: expression hosts and process development, Front. Bioeng. Biotechnol., 7, 420, doi: 10.3389/fbioe.2019.00420.
  20. Kunert, R., and Reinhart, D. (2016) Advances in recombinant antibody manufacturing, Appl. Microbiol. Biotechnol., 100, 3451-3461, doi: 10.1007/s00253-016-7388-9.
  21. Blanco, B., Dominguez-Alonso, C., and Alvarez-Vallina, L. (2021) Bispecific immunomodulatory antibodies for cancer immunotherapy, Clin. Cancer Res., 27, 5457-5464, doi: 10.1158/1078-0432.CCR-20-3770.
  22. Labrijn, A. F., Janmaat, M. L., Reichert, J. M., and Parren, P. (2019) Bispecific antibodies: a mechanistic review of the pipeline, Nat. Rev. Drug Discov., 18, 585-608, doi: 10.1038/s41573-019-0028-1.
  23. Muller, D., Karle, A., Meissburger, B., Hofig, I., Stork, R., and Kontermann, R. E. (2007) Improved pharmacokinetics of recombinant bispecific antibody molecules by fusion to human serum albumin, J. Biol. Chem., 282, 12650-12660, doi: 10.1074/jbc.M700820200.
  24. Bern, M., Nilsen, J., Ferrarese, M., Sand, K. M. K., Gjolberg, T. T., Lode, H. E., Davidson, R. J., Camire, R. M., Baekkevold, E. S., Foss, S., Grevys, A., Dalhus, B., Wilson, J., Hoydahl, L. S., Christianson, G. J., Roopenian, D. C., Schlothauer, T., Michaelsen, T. E., Moe, M. C., Lombardi, S., et al. (2020) An engineered human albumin enhances half-life and transmucosal delivery when fused to protein-based biologics, Sci. Transl. Med., 12, eabb0580, doi: 10.1126/scitranslmed.abb0580.
  25. Zhang, J., Yi, J., and Zhou, P. (2020) Development of bispecific antibodies in China: overview and prospects, Antib. Ther., 3, 126-145, doi: 10.1093/abt/tbaa011.
  26. Klein, C., Sustmann, C., Thomas, M., Stubenrauch, K., Croasdale, R., Schanzer, J., Brinkmann, U., Kettenberger, H., Regula, J. T., and Schaefer, W. (2012) Progress in overcoming the chain association issue in bispecific heterodimeric IgG antibodies, mAbs, 4, 653-663, doi: 10.4161/mabs.21379.
  27. Moore, G. L., Bernett, M. J., Rashid, R., Pong, E. W., Nguyen, D. T., Jacinto, J., Eivazi, A., Nisthal, A., Diaz, J. E., Chu, S. Y., Muchhal, U. S., and Desjarlais, J. R. (2019) A robust heterodimeric Fc platform engineered for efficient development of bispecific antibodies of multiple formats, Methods, 154, 38-50, doi: 10.1016/j.ymeth.2018.10.006.
  28. Moore, G. L., Bautista, C., Pong, E., Nguyen, D. H., Jacinto, J., Eivazi, A., Muchhal, U. S., Karki, S., Chu, S. Y., and Lazar, G. A. (2011) A novel bispecific antibody format enables simultaneous bivalent and monovalent co-engagement of distinct target antigens, mAbs, 3, 546-557, doi: 10.4161/mabs.3.6.18123.
  29. Merchant, A. M., Zhu, Z., Yuan, J. Q., Goddard, A., Adams, C. W., Presta, L. G., and Carter, P. (1998) An efficient route to human bispecific IgG, Nat. Biotechnol., 16, 677-681, doi: 10.1038/nbt0798-677.
  30. Surowka, M., Schaefer, W., and Klein, C. (2021) Ten years in the making: application of CrossMab technology for the development of therapeutic bispecific antibodies and antibody fusion proteins, mAbs, 13, 1967714, doi: 10.1080/19420862.2021.1967714.
  31. Gong, S., and Wu, C. (2019) Generation of Fabs-in-tandem immunoglobulin molecules for dual-specific targeting, Methods, 154, 87-92, doi: 10.1016/j.ymeth.2018.07.014.
  32. Gong, S., Ren, F., Wu, D., Wu, X., and Wu, C. (2017) Fabs-in-tandem immunoglobulin is a novel and versatile bispecific design for engaging multiple therapeutic targets, mAbs, 9, 1118-1128, doi: 10.1080/19420862.2017.1345401.
  33. De Nardis, C., Hendriks, L. J. A., Poirier, E., Arvinte, T., Gros, P., Bakker, A. B. H., and de Kruif, J. (2017) A new approach for generating bispecific antibodies based on a common light chain format and the stable architecture of human immunoglobulin G(1), J. Biol. Chem., 292, 14706-14717, doi: 10.1074/jbc.M117.793497.
  34. Klein, C., Moessner, E., Hosse, R., Bruenker, P., Umana, P., and Neumann, C. (2017) Common Light Chains and Methods of Use, Hoffmann La Roche Inc., USA.
  35. Wu, Y., Yi, M., Zhu, S., Wang, H., and Wu, K. (2021) Recent advances and challenges of bispecific antibodies in solid tumors, Exp. Hematol. Oncol., 10, 56, doi: 10.1186/s40164-021-00250-1.
  36. Wei, H., Cai, H., Jin, Y., Wang, P., Zhang, Q., Lin, Y., Wang, W., Cheng, J., Zeng, N., Xu, T., and Zhou, A. (2017) Structural basis of a novel heterodimeric Fc for bispecific antibody production, Oncotarget, 8, 51037-51049, doi: 10.18632/oncotarget.17558.
  37. Wu, C., Ying, H., Grinnell, C., Bryant, S., Miller, R., Clabbers, A., Bose, S., McCarthy, D., Zhu, R. R., Santora, L., Davis-Taber, R., Kunes, Y., Fung, E., Schwartz, A., Sakorafas, P., Gu, J., Tarcsa, E., Murtaza, A., and Ghayur, T. (2007) Simultaneous targeting of multiple disease mediators by a dual-variable-domain immunoglobulin, Nat. Biotechnol., 25, 1290-1297, doi: 10.1038/nbt1345.
  38. DiGiammarino, E., Ghayur, T., and Liu, J. (2012) Design and generation of DVD-Ig molecules for dual-specific targeting, Methods Mol. Biol., 899, 145-156, doi: 10.1007/978-1-61779-921-1_9.
  39. Wesche, H., Aaron, W., Austin, R. J., Baeuerle, P. A., Jones, A., Lemon, B., Sexton, K., and Yu, T. (2018) Abstract 3814: TriTACs are novel T cell-engaging therapeutic proteins optimized for the treatment of solid tumors and for long serum half-life, Cancer Res., 78, 3814-3814, doi: 10.1158/1538-7445.Am2018-3814.
  40. Oates, J., Hassan, N. J., and Jakobsen, B. K. (2015) ImmTACs for targeted cancer therapy: Why, what, how, and which, Mol. Immunol., 67, 67-74, doi: 10.1016/j.molimm.2015.01.024.
  41. Holland, C. J., Crean, R. M., Pentier, J. M., de Wet, B., Lloyd, A., Srikannathasan, V., Lissin, N., Lloyd, K. A., Blicher, T. H., Conroy, P. J., Hock, M., Pengelly, R. J., Spinner, T. E., Cameron, B., Potter, E. A., Jeyanthan, A., Molloy, P. E., Sami, M., Aleksic, M., Liddy, N., et al. (2020) Specificity of bispecific T cell receptors and antibodies targeting peptide-HLA, J. Clin. Invest., 130, 2673-2688, doi: 10.1172/JCI130562.
  42. Rashid, M. H. (2022) Full-length recombinant antibodies from Escherichia coli: production, characterization, effector function (Fc) engineering, and clinical evaluation, mAbs, 14, 2111748, doi: 10.1080/19420862.2022.2111748.
  43. Lalonde, M. E., and Durocher, Y. (2017) Therapeutic glycoprotein production in mammalian cells, J. Biotechnol., 251, 128-140, doi: 10.1016/j.jbiotec.2017.04.028.
  44. Dangi, A. K., Sinha, R., Dwivedi, S., Gupta, S. K., and Shukla, P. (2018) Cell line techniques and gene editing tools for antibody production: a review, Front. Pharmacol., 9, 630, doi: 10.3389/fphar.2018.00630.
  45. Sandomenico, A., Sivaccumar, J. P., and Ruvo, M. (2020) Evolution of Escherichia coli expression system in producing antibody recombinant fragments, Int. J. Mol. Sci., 21, 6324, doi: 10.3390/ijms21176324.
  46. Damato, B. E., Dukes, J., Goodall, H., and Carvajal, R. D. (2019) Tebentafusp: T cell redirection for the treatment of metastatic uveal melanoma, Cancers (Basel), 11, 971, doi: 10.3390/cancers11070971.
  47. Lin, L., Li, L., Zhou, C., Li, J., Liu, J., Shu, R., Dong, B., Li, Q., and Wang, Z. (2018) A HER2 bispecific antibody can be efficiently expressed in Escherichia coli with potent cytotoxicity, Oncol. Lett., 16, 1259-1266, doi: 10.3892/ol.2018.8698.
  48. Spiess, C., Merchant, M., Huang, A., Zheng, Z., Yang, N. Y., Peng, J., Ellerman, D., Shatz, W., Reilly, D., Yansura, D. G., and Scheer, J. M. (2013) Bispecific antibodies with natural architecture produced by co-culture of bacteria expressing two distinct half-antibodies, Nat. Biotechnol., 31, 753-758, doi: 10.1038/nbt.2621.
  49. Patil, R. S., Anupa, A., Gupta, J. A., and Rathore, A. S. (2022) Challenges in expression and purification of functional Fab fragments in E. coli: current strategies and perspectives, Fermentation, 8, 175, doi: 10.3390/fermentation8040175.
  50. Baumgarten, T., Ytterberg, A. J., Zubarev, R. A., and de Gier, J. W. (2018) Optimizing recombinant protein production in the Escherichia coli periplasm alleviates stress, Appl. Environ. Microbiol., 84, e00270-18, doi: 10.1128/AEM.00270-18.
  51. Jyothilekshmi, I., and Jayaprakash, N. S. (2021) Trends in monoclonal antibody production using various bioreactor syst, J. Microbiol. Biotechnol., 31, 349-357, doi: 10.4014/jmb.1911.11066.
  52. Jain, N. K., Barkowski-Clark, S., Altman, R., Johnson, K., Sun, F., Zmuda, J., Liu, C. Y., Kita, A., Schulz, R., Neill, A., Ballinger, R., Patel, R., Liu, J., Mpanda, A., Huta, B., Chiou, H., Voegtli, W., and Panavas, T. (2017) A high density CHO-S transient transfection system: comparison of ExpiCHO and Expi293, Protein Express. Purif., 134, 38-46, doi: 10.1016/j.pep.2017.03.018.
  53. Wurm, F. M. (2014) 2.2 CHO History, CHO evolution and CHO genomics - an unsolvable enigma? in Animal Cell Biotechnology: In Biologics Production, pp. 38-59, doi: 10.1515/9783110278965.38.
  54. Dhara, V. G., Naik, H. M., Majewska, N. I., and Betenbaugh, M. J. (2018) Recombinant antibody production in CHO and NS0 cells: differences and similarities, BioDrugs, 32, 571-584, doi: 10.1007/s40259-018-0319-9.
  55. Naddafi, F., Shirazi, F. H., Talebkhan, Y., Tabarzad, M., Barkhordari, F., Aliabadi Farahani, Z., Bayat, E., Moazzami, R., Mahboudi, F., and Davami, F. (2018) A comparative study of the bispecific monoclonal antibody, blinatumomab expression in CHO cells and E. coli, Prep. Biochem. Biotechnol., 48, 961-967, doi: 10.1080/10826068.2018.1525562.
  56. Jain, S., Aresu, L., Comazzi, S., Shi, J., Worrall, E., Clayton, J., Humphries, W., Hemmington, S., Davis, P., Murray, E., Limeneh, A. A., Ball, K., Ruckova, E., Muller, P., Vojtesek, B., Fahraeus, R., Argyle, D., and Hupp, T. R. (2016) The development of a recombinant scFv monoclonal antibody targeting canine CD20 for use in comparative medicine, PLoS One, 11, e0148366, doi: 10.1371/journal.pone.0148366.
  57. Ha, T. K., Kim, D., Kim, C. L., Grav, L. M., and Lee, G. M. (2022) Factors affecting the quality of therapeutic proteins in recombinant Chinese hamster ovary cell culture, Biotechnol. Adv., 54, 107831, doi: 10.1016/j.biotechadv.2021.107831.
  58. Ding, M., Shen, L., Xiao, L., Liu, X., and Hu, J. (2021) A cell line development strategy to improve a bispecific antibody expression purity in CHO cells, Biochem. Engin. J., 166, 107857, doi: 10.1016/j.bej.2020.107857.
  59. Sinharoy, P., Aziz, A. H., Majewska, N. I., Ahuja, S., and Handlogten, M. W. (2020) Perfusion reduces bispecific antibody aggregation via mitigating mitochondrial dysfunction-induced glutathione oxidation and ER stress in CHO cells, Sci. Rep., 10, 16620, doi: 10.1038/s41598-020-73573-4.
  60. Jaluria, P., Betenbaugh, M., Konstantopoulos, K., and Shiloach, J. (2007) Enhancement of cell proliferation in various mammalian cell lines by gene insertion of a cyclin-dependent kinase homolog, BMC Biotechnol., 7, 71, doi: 10.1186/1472-6750-7-71.
  61. Kol, S., Ley, D., Wulff, T., Decker, M., Arnsdorf, J., Schoffelen, S., Hansen, A. H., Jensen, T. L., Gutierrez, J. M., Chiang, A. W. T., Masson, H. O., Palsson, B. O., Voldborg, B. G., Pedersen, L. E., Kildegaard, H. F., Lee, G. M., and Lewis, N. E. (2020) Multiplex secretome engineering enhances recombinant protein production and purity, Nat. Commun., 11, 1908, doi: 10.1038/s41467-020-15866-w.
  62. Avello, V., Torres, M., Vergara, M., Berrios, J., Valdez-Cruz, N. A., Acevedo, C., Molina Sampayo, M., Dickson, A. J., and Altamirano, C. (2022) Enhanced recombinant protein production in CHO cell continuous cultures under growth-inhibiting conditions is associated with an arrested cell cycle in G1/G0 phase, PLoS One, 17, e0277620, doi: 10.1371/journal.pone.0277620.
  63. Dietmair, S., Hodson, M. P., Quek, L. E., Timmins, N. E., Gray, P., and Nielsen, L. K. (2012) A multi-omics analysis of recombinant protein production in Hek293 cells, PLoS One, 7, e43394, doi: 10.1371/journal.pone.0043394.
  64. Tan, E., Chin, C. S. H., Lim, Z. F. S., and Ng, S. K. (2021) HEK293 cell line as a platform to produce recombinant proteins and viral vectors, Front. Bioeng. Biotechnol., 9, 796991, doi: 10.3389/fbioe.2021.796991.
  65. Abaandou, L., Quan, D., and Shiloach, J. (2021) Affecting HEK293 cell growth and production performance by modifying the expression of specific genes, Cells, 10, 1667, doi: 10.3390/cells10071667.
  66. Cullum, S. A., Veprintsev, D. B., and Hill, S. J. (2023) Kinetic analysis of endogenous beta(2) -adrenoceptor-mediated cAMP GloSensor responses in HEK293 cells, Br. J. Pharmacol., 180, 1304-1315, doi: 10.1111/bph.16008.
  67. DuBridge, R. B., Tang, P., Hsia, H. C., Leong, P. M., Miller, J. H., and Calos, M. P. (1987) Analysis of mutation in human cells by using an Epstein-Barr virus shuttle system, Mol. Cell. Biol., 7, 379-387, doi: 10.1128/mcb.7.1.379-387.1987.
  68. Abaandou, L., Sharma, A. K., and Shiloach, J. (2021) Knockout of the caspase 8-associated protein 2 gene improves recombinant protein expression in HEK293 cells through up-regulation of the cyclin-dependent kinase inhibitor 2A gene, Biotechnol. Bioeng., 118, 186-198, doi: 10.1002/bit.27561.
  69. Uhler, R., Popa-Wagner, R., Kroning, M., Brehm, A., Rennert, P., Seifried, A., Peschke, M., Krieger, M., Kohla, G., Kannicht, C., Wiedemann, P., Hafner, M., and Rosenlocher, J. (2021) Glyco-engineered HEK 293-F cell lines for the production of therapeutic glycoproteins with human N-glycosylation and improved pharmacokinetics, Glycobiology, 31, 859-872, doi: 10.1093/glycob/cwaa119.
  70. Gunasekaran, K., Pentony, M., Shen, M., Garrett, L., Forte, C., Woodward, A., Ng, S. B., Born, T., Retter, M., Manchulenko, K., Sweet, H., Foltz, I. N., Wittekind, M., and Yan, W. (2010) Enhancing antibody Fc heterodimer formation through electrostatic steering effects: applications to bispecific molecules and monovalent IgG, J. Biol. Chem., 285, 19637-19646, doi: 10.1074/jbc.M110.117382.
  71. Schaefer, W., Regula, J. T., Bahner, M., Schanzer, J., Croasdale, R., Durr, H., Gassner, C., Georges, G., Kettenberger, H., Imhof-Jung, S., Schwaiger, M., Stubenrauch, K. G., Sustmann, C., Thomas, M., Scheuer, W., and Klein, C. (2011) Immunoglobulin domain crossover as a generic approach for the production of bispecific IgG antibodies, Proc. Natl. Acad. Sci. USA, 108, 11187-11192, doi: 10.1073/pnas.1019002108.
  72. Segaliny, A. I., Jayaraman, J., Chen, X., Chong, J., Luxon, R., Fung, A., Fu, Q., Jiang, X., Rivera, R., Ma, X., Ren, C., Zimak, J., Hedde, P. N., Shang, Y., Wu, G., and Zhao, W. (2023) A high throughput bispecific antibody discovery pipeline, Commun. Biol., 6, 380, doi: 10.1038/s42003-023-04746-w.
  73. Mazor, Y., Oganesyan, V., Yang, C., Hansen, A., Wang, J., Liu, H., Sachsenmeier, K., Carlson, M., Gadre, D. V., Borrok, M. J., Yu, X. Q., Dall'Acqua, W., Wu, H., and Chowdhury, P. S. (2015) Improving target cell specificity using a novel monovalent bispecific IgG design, mAbs, 7, 377-389, doi: 10.1080/19420862.2015.1007816.
  74. Fang, X. T., Sehlin, D., Lannfelt, L., Syvanen, S., and Hultqvist, G. (2017) Efficient and inexpensive transient expression of multispecific multivalent antibodies in Expi293 cells, Biol. Proced. Online, 19, 11, doi: 10.1186/s12575-017-0060-7.
  75. Lu, X., Ye, Y., Wang, Y., Xu, J., Sun, J., Ji, J., Zhang, Y., and Sun, X. (2023) Rapid generation of high-quality recombinant antibodies using an Expi293F expression system for a 17 beta-estradiol immunoassay, J. Hazard. Mater., 451, 131126, doi: 10.1016/j.jhazmat.2023.131126.
  76. Roobol, A., Roobol, J., Smith, M. E., Carden, M. J., Hershey, J. W. B., Willis, A. E., and Smales, C. M. (2020) Engineered transient and stable overexpression of translation factors eIF3i and eIF3c in CHOK1 and HEK293 cells gives enhanced cell growth associated with increased c-Myc expression and increased recombinant protein synthesis, Metab. Eng., 59, 98-105, doi: 10.1016/j.ymben.2020.02.001.
  77. Malm, M., Saghaleyni, R., Lundqvist, M., Giudici, M., Chotteau, V., Field, R., Varley, P. G., Hatton, D., Grassi, L., Svensson, T., Nielsen, J., and Rockberg, J. (2020) Evolution from adherent to suspension: systems biology of HEK293 cell line development, Sci. Rep., 10, 18996, doi: 10.1038/s41598-020-76137-8.
  78. Malm, M., Kuo, C. C., Barzadd, M. M., Mebrahtu, A., Wistbacka, N., Razavi, R., Volk, A. L., Lundqvist, M., Kotol, D., Tegel, H., Hober, S., Edfors, F., Graslund, T., Chotteau, V., Field, R., Varley, P. G., Roth, R. G., Lewis, N. E., Hatton, D., and Rockberg, J. (2022) Harnessing secretory pathway differences between HEK293 and CHO to rescue production of difficult to express proteins, Metab. Eng., 72, 171-187, doi: 10.1016/j.ymben.2022.03.009.
  79. Tepap, C. Z., Anissi, J., and Bounou, S. (2023) Recent strategies to achieve high production yield of recombinant protein: A review, J. Cell. Biotechnol., 9, 25-37, doi: 10.3233/jcb-220084.
  80. Perez, J. G., Stark, J. C., and Jewett, M. C. (2016) Cell-free synthetic biology: engineering beyond the cell, Cold Spring Harb. Perspect. Biol., 8, a023853, doi: 10.1101/cshperspect.a023853.
  81. Silverman, A. D., Karim, A. S., and Jewett, M. C. (2020) Cell-free gene expression: an expanded repertoire of applications, Nat. Rev. Genet., 21, 151-170, doi: 10.1038/s41576-019-0186-3.
  82. Liu, W.-Q., Zhang, L., Chen, M., and Li, J. (2019) Cell-free protein synthesis: recent advances in bacterial extract sources and expanded applications, Biochem. Eng. J., 141, 182-189, doi: 10.1016/j.bej.2018.10.023.
  83. Jin, X., and Hong, S. H. (2018) Cell-free protein synthesis for producing ‘difficult-to-express' proteins, Biochem. Eng. J., 138, 156-164, doi: 10.1016/j.bej.2018.07.013.
  84. Kightlinger, W., Duncker, K. E., Ramesh, A., Thames, A. H., Natarajan, A., Stark, J. C., Yang, A., Lin, L., Mrksich, M., and DeLisa, M. P. (2019) A cell-free biosynthesis platform for modular construction of protein glycosylation pathways, Nat. Commun., 10, 5404, doi: 10.1038/s41467-019-12024-9.
  85. Contreras-Llano, L. E., and Tan, C. (2018) High-throughput screening of biomolecules using cell-free gene expression systems, Synth. Biol., 3, ysy012, doi: 10.1093/synbio/ysy012.
  86. Dondapati, S. K., Stech, M., Zemella, A., and Kubick, S. (2020) Cell-free protein synthesis: a promising option for future drug development, BioDrugs, 34, 327-348, doi: 10.1007/s40259-020-00417-y.
  87. Zhang, L., Guo, W., and Lu, Y. (2020) Advances in cell-free biosensors: principle, mechanism, and applications, Biotechnol. J., 15, 2000187, doi: 10.1002/biot.202000187.
  88. Ojima-Kato, T., Hashimura, D., Kojima, T., Minabe, S., and Nakano, H. (2015) In vitro generation of rabbit anti-Listeria monocytogenes monoclonal antibody using single cell based RT-PCR linked cell-free expression systems, J. Immunol. Methods, 427, 58-65, doi: 10.1016/j.jim.2015.10.001.
  89. Hashimoto, Y., Zhou, W., Hamauchi, K., Shirakura, K., Doi, T., Yagi, K., Sawasaki, T., Okada, Y., Kondoh, M., and Takeda, H. (2018) Engineered membrane protein antigens successfully induce antibodies against extracellular regions of claudin-5, Sci. Rep., 8, 8383, doi: 10.1038/s41598-018-26560-9.
  90. Lee, K.-H., and Kim, D.-M. (2018) Recent advances in development of cell-free protein synthesis systems for fast and efficient production of recombinant proteins, FEMS Microbiol. Lett., 365, fny174, doi: 10.1093/femsle/fny174.
  91. Stech, M., Merk, H., Schenk, J. A., Stocklein, W. F., Wustenhagen, D. A., Micheel, B., Duschl, C., Bier, F. F., and Kubick, S. (2012) Production of functional antibody fragments in a vesicle-based eukaryotic cell-free translation system, J. Biotechnol., 164, 220-231, doi: 10.1016/j.jbiotec.2012.08.020.
  92. Martin, R. W., Majewska, N. I., Chen, C. X., Albanetti, T. E., Jimenez, R. B. C., Schmelzer, A. E., Jewett, M. C., and Roy, V. (2017) Development of a CHO-based cell-free platform for synthesis of active monoclonal antibodies, ACS Synth. Biol., 6, 1370-1379, doi: 10.1021/acssynbio.7b00001.
  93. Takeda, H., Ogasawara, T., Ozawa, T., Muraguchi, A., Jih, P. J., Morishita, R., Uchigashima, M., Watanabe, M., Fujimoto, T., Iwasaki, T., Endo, Y., and Sawasaki, T. (2015) Production of monoclonal antibodies against GPCR using cell-free synthesized GPCR antigen and biotinylated liposome-based interaction assay, Sci. Rep., 5, 11333, doi: 10.1038/srep11333.
  94. Sonnabend, A., Spahn, V., Stech, M., Zemella, A., Stein, C., and Kubick, S. (2017) Production of G protein-coupled receptors in an insect-based cell-free system, Biotechnol. Bioeng., 114, 2328-2338, doi: 10.1002/bit.26346.
  95. Stamatis, C., and Farid, S. S. (2021) Process economics evaluation of cell-free synthesis for the commercial manufacture of antibody drug conjugates, Biotechnol. J., 16, e2000238, doi: 10.1002/biot.202000238.
  96. Stech, M., Nikolaeva, O., Thoring, L., Stocklein, W. F. M., Wustenhagen, D. A., Hust, M., Dubel, S., and Kubick, S. (2017) Cell-free synthesis of functional antibodies using a coupled in vitro transcription-translation system based on CHO cell lysates, Sci. Rep., 7, 12030, doi: 10.1038/s41598-017-12364-w.
  97. Haueis, L., Stech, M., and Kubick, S. (2022) A cell-free expression pipeline for the generation and functional characterization of nanobodies, Front. Bioeng. Biotechnol., 10, 896763, doi: 10.3389/fbioe.2022.896763.
  98. Ratner, M. (2014) Celgene wagers on Sutro's cell-free platform to ramp up ADCs, Nat. Biotechnol., 32, 1175, doi: 10.1038/nbt1214-1175.
  99. Hanson, J., Groff, D., Carlos, A., Usman, H., Fong, K., Yu, A., Armstrong, S., Dwyer, A., Masikat, M. R., Yuan, D., Tran, C., Heibeck, T., Zawada, J., Chen, R., Hallam, T., and Yin, G. (2023) An integrated in vivo/in vitro protein production platform for site-specific antibody drug conjugates, Bioengineering (Basel), 10, 304, doi: 10.3390/bioengineering10030304.

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies