Recent developments in bioprocessing of recombinant antibody fragments

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Biotechnological and biomedical applications of antibodies have been on a steady rise since the 1980s. As unique and highly specific bioreagents, monoclonal antibodies (mAbs) have been widely exploited and approved as therapeutic agents. However, the use of mAbs has limitations for therapeutic applications. Antibody fragments (AbFs) with preserved antigen-binding sites have a significant potential to overcome the disadvantages of conventional mAbs, such as heterogeneous tissue distribution after systemic administration, especially in solid tumors, and Fc-mediated bystander activation of the immune system. AbFs possess better biodistribution coefficient due to lower molecular weight. They preserve the functional features of mAbs, such as antigen specificity and binding, while at the same time, ensuring much better tissue penetration. An additional benefit of AbFs is the possibility of their production in bacterial and yeast cells due to the small size, more robust structure, and lack of posttranslational modifications. In this review, we described current approaches to the AbF production with recent examples of AbF synthesis in bacterial and yeast expression systems and methods for the production optimization.

About the authors

N. Zelenovic

University of Belgrade

11000 Belgrade, Serbia

L. Filipovic

University of Belgrade

11000 Belgrade, Serbia

M. Popovic

University of Belgrade

Email: la_bioquimica@chem.bg.ac.rs
11000 Belgrade, Serbia

References

  1. Mitra, S., and Tomar, P. C. (2021) Hybridoma technology; advancements, clinical significance, and future aspects, J. Genet. Eng. Biotechnol., 19, 159, doi: 10.1186/s43141-021-00264-6.
  2. Liu, J. K. (2014) The history of monoclonal antibody development - progress, remaining challenges and future innovations, Ann. Med. Surg. (Lond), 3, 113-116, doi: 10.1016/j.amsu.2014.09.001.
  3. De Marco, A. (2011) Biotechnological applications of recombinant single-domain antibody fragments, Microb. Cell Fact., 10, 44, doi: 10.1186/1475-2859-10-44.
  4. Geyer, C. R., McCafferty, J., Dubel, S., Bradbury, A. R., and Sidhu, S. S. (2012) Recombinant antibodies and in vitro selection technologies, Methods Mol. Biol., 901, 11-32, doi: 10.1007/978-1-61779-931-0_2.
  5. Ahmad, Z. A., Yeap, S. K., Ali, A. M., Ho, W. Y., Alitheen, N. B., and Hamid, M. (2012) scFv antibody: principles and clinical application, Clin. Dev. Immunol., 2012, 980250, doi: 10.1155/2012/980250.
  6. Pluen, A., Boucher, Y., Ramanujan, S., McKee, T. D., Gohongi, T., di Tomaso, E., Brown, E. B., Izumi, Y., Campbell, R. B., Berk, D. A., and Jain, R. K. (2001) Role of tumor-host interactions in interstitial diffusion of macromolecules: cranial vs. subcutaneous tumors, Proc. Natl. Acad. Sci. USA, 98, 4628-4633, doi: 10.1073/pnas.081626898.
  7. Khawli, L. A., Biela, B., Hu, P., and Epstein, A. L. (2003) Comparison of recombinant derivatives of chimeric TNT-3 antibody for the radioimaging of solid tumors, Hybrid Hybridomics, 22, 1-9, doi: 10.1089/153685903321538026.
  8. Thurber, G. M., and Wittrup, K. D. (2008) Quantitative spatiotemporal analysis of antibody fragment diffusion and endocytic consumption in tumor spheroids, Cancer Res., 68, 3334-3341, doi: 10.1158/0008-5472.Can-07-3018.
  9. Pirkalkhoran, S., Grabowska, W. R., Kashkoli, H. H., Mirhassani, R., Guiliano, D., Dolphin, C., and Khalili, H. (2023) Bioengineering of antibody fragments: challenges and opportunities, Bioengineering (Basel), 10, 122, doi: 10.3390/bioengineering10020122.
  10. Li, Z., Krippendorff, B. F., Sharma, S., Walz, A. C., Lavé, T., and Shah, D. K. (2016) Influence of molecular size on tissue distribution of antibody fragments, MAbs, 8, 113-119, doi: 10.1080/19420862.2015.1111497.
  11. Balthasar, J., and Fung, H. L. (1994) Utilization of antidrug antibody fragments for the optimization of intraperitoneal drug therapy: studies using digoxin as a model drug, J. Pharmacol. Exp. Ther., 268, 734-739.
  12. Dugel, P. U., Koh, A., Ogura, Y., Jaffe, G. J., Schmidt-Erfurth, U., Brown, D. M., Gomes, A. V., Warburton, J., Weichselberger, A., Holz, F. G., HAWK and HARRIER Study Investigators (2020) HAWK and HARRIER: phase 3, multicenter, randomized, double-masked trials of brolucizumab for neovascular age-related macular degeneration, Ophthalmology, 127, 72-84, doi: 10.1016/j.ophtha.2019.04.017.
  13. Popovic, M., Andjelkovic, U., Burazer, L., Lindner, B., Petersen, A., and Gavrovic-Jankulovic, M. (2013) Biochemical and immunological characterization of a recombinantly-produced antifungal cysteine proteinase inhibitor from green kiwifruit (Actinidia deliciosa), Phytochemistry, 94, 53-59, doi: 10.1016/j.phytochem.2013.06.006.
  14. Abughren, M., Popović, M., Dimitrijević, R., Burazer, L., Grozdanović, M., Atanasković-Marković, M., and Gavrović-Jankulović, M. (2012) Optimization of the heterologous expression of banana glucanase in Escherichia coli, J. Serb. Chem. Soc., 77, 43-52, doi: 10.2298/JSC110309158A.
  15. Arbabi-Ghahroudi, M., Tanha, J., and MacKenzie, R. (2005). Prokaryotic expression of antibodies, Cancer Metastasis Rev., 24, 501-519, doi: 10.1007/s10555-005-6193-1.
  16. Charlton, K. A. (2004) Expression and Isolation of Recombinant Antibody Fragments in E. coli. in Antibody Engineering: Methods and Protocols (Lo, B. K. C., ed) Humana Press, Totowa, NJ, pp. 245-254.
  17. Walsh, G. (2010) Biopharmaceutical benchmarks 2010, Nat. Biotechnol., 28, 917-924, doi: 10.1038/nbt0910-917.
  18. Kang, T. H., and Seong, B. L. (2020) Solubility, stability, and avidity of recombinant antibody fragments expressed in microorganisms, Front. Microbiol., 11, 1927, doi: 10.3389/fmicb.2020.01927.
  19. Choi, J., and Lee, S. (2004) Secretory and extracellular production of recombinant proteins using Escherichia coli, Appl. Microbiol. Biotechnol., 64, 625-635, doi: 10.1007/s00253-004-1559-9.
  20. Sandomenico, A., Sivaccumar, J. P., and Ruvo, M. (2020) Evolution of Escherichia coli expression system in producing antibody recombinant fragments, Int. J. Mol. Sci., 21, 6324, doi: 10.3390/ijms21176324.
  21. Challener, C. A. (2015) Fermentation for the future, BioPharm Int., 28, 30-31.
  22. Basu, A., Li, X., and Leong, S. S. J. (2011) Refolding of proteins from inclusion bodies: rational design and recipes, Appl. Microbiol. Biotechnol., 92, 241-251, doi: 10.1007/s00253-011-3513-y.
  23. Popovic, M., Mazzega, E., Toffoletto, B., and de Marco, A. (2018) Isolation of anti-extra-cellular vesicle single-domain antibodies by direct panning on vesicle-enriched fractions, Microb. Cell Factor., 17, 6, doi: 10.1186/s12934-017-0856-9.
  24. De Marco, A. (2022) Cytoplasmic production of nanobodies and nanobody-based reagents by co-expression of sulfhydryl oxidase and DsbC isomerase, Methods Mol. Biol., 2446, 145-157, doi: 10.1007/978-1-0716-2075-5_7.
  25. Veggiani, G., and de Marco, A. (2011) Improved quantitative and qualitative production of single-domain intrabodies mediated by the co-expression of Erv1p sulfhydryl oxidase, Protein Express. Purif., 79, 111-114, doi: 10.1016/j.pep.2011.03.005.
  26. Rahbarizadeh, F., Rasaee, M. J., Forouzandeh-Moghadam, M., and Allameh, A.-A. (2005) High expression and purification of the recombinant camelid anti-MUC1 single domain antibodies in Escherichia coli, Protein Express. Purif., 44, 32-38, doi: 10.1016/j.pep.2005.04.008.
  27. Djender, S., Schneider, A., Beugnet, A., Crepin, R., Desrumeaux, K. E., Romani, C., Moutel, S., Perez, F., and de Marco, A. (2014) Bacterial cytoplasm as an effective cell compartment for producing functional VHH-based affinity reagents and Camelidae IgG-like recombinant antibodies, Microb. Cell Factor., 13, 140, doi: 10.1186/s12934-014-0140-1.
  28. Gaciarz, A., Veijola, J., Uchida, Y., Saaranen, M. J., Wang, C., Hörkkö, S., and Ruddock, L. W. (2016) Systematic screening of soluble expression of antibody fragments in the cytoplasm of E. coli, Microb. Cell Factor., 15, 22, doi: 10.1186/s12934-016-0419-5.
  29. Humphreys, D. P., Sehdev, M., Chapman, A. P., Ganesh, R., Smith, B. J., King, L. M., Glover, D. J., Reeks, D. G., and Stephens, P. E. (2000) High-level periplasmic expression in Escherichia coli using a eukaryotic signal peptide: importance of codon usage at the 5′ end of the coding sequence, Protein Express. Purif., 20, 252-264, doi: 10.1006/prep.2000.1286.
  30. Ellis, M., Patel, P., Edon, M., Ramage, W., Dickinson, R., and Humphreys, D. P. (2017) Development of a high yielding E. coli periplasmic expression system for the production of humanized Fab' fragments, Biotechnol. Prog., 33, 212-220, doi: 10.1002/btpr.2393.
  31. Liu, M., Feng, X., Ding, Y., Zhao, G., Liu, H., and Xian, M. (2015) Metabolic engineering of Escherichia coli to improve recombinant protein production, Appl. Microbiol. Biotechnol., 99, 10367-10377, doi: 10.1007/s00253-015-6955-9.
  32. Selas Castiñeiras, T., Williams, S. G., Hitchcock, A. G., and Smith, D. C. (2018) E. coli strain engineering for the production of advanced biopharmaceutical products, FEMS Microbiol. Lett., 365, fny162, doi: 10.1093/femsle/fny162.
  33. Sørensen, H. P., and Mortensen, K. K. (2005) Advanced genetic strategies for recombinant protein expression in Escherichia coli, J. Biotechnol., 115, 113-128, doi: 10.1016/j.jbiotec.2004.08.004.
  34. Hayat, S. M., Farahani, N., Golichenari, B., and Sahebkar, A. (2018) Recombinant protein expression in Escherichia coli (E. coli): what we need to know, Curr. Pharmaceut. Design, 24, 718-725, doi: 10.2174/1381612824666180131121940.
  35. Pardon, E., Laeremans, T., Triest, S., Rasmussen, S. G., Wohlkönig, A., Ruf, A., Muyldermans, S., Hol, W. G., Kobilka, B. K., and Steyaert, J. (2014) A general protocol for the generation of Nanobodies for structural biology, Nat. Protocols, 9, 674-693, doi: 10.1038/nprot.2014.039.
  36. Jember, T. F. (2021) Molecular cloning, expression and purification of recombinant VHH proteins expressed in E. coli, Am. J. Mol. Biol., 11, 129-141, doi: 10.4236/ajmb.2021.114011.
  37. Su, Q., Shi, W., Huang, X., Wan, Y., Li, G., Xing, B., Xu, Z. P., Liu, H., Hammock, B. D., Yang, X., Yin, S., and Lu, X. (2022) Screening, expression, and identification of nanobody against SARS-CoV-2 spike protein, Cells, 11, 3355, doi: 10.3390/cells11213355.
  38. Hu, Y., Wang, Y., Lin, J., Wu, S., Muyldermans, S., and Wang, S. (2022) Versatile application of nanobodies for food allergen detection and allergy immunotherapy, J. Agricult. Food Chem., 70, 8901-8912, doi: 10.1021/acs.jafc.2c03324.
  39. Hemamalini, N., Ezhilmathi, S., and Mercy, A. A. (2020) Recombinant protein expression optimization in Escherichia coli: a review, Ind. J. Animal Res., 54, 653-660, doi: 10.18805/ijar.B-3808.
  40. Gupta, S. K., and Shukla, P. (2017) Microbial platform technology for recombinant antibody fragment production: a review, Crit. Rev. Microbiol., 43, 31-42, doi: 10.3109/1040841X.2016.1150959.
  41. Mehta, D., Chirmade, T., Tungekar, A. A., Gani, K., and Bhambure, R. (2021) Cloning and expression of antibody fragment (Fab) I: Effect of expression construct and induction strategies on light and heavy chain gene expression, Biochem. Engin. J., 176, 108189, doi: 10.1016/j.bej.2021.108189.
  42. Henry, K. A., Sulea, T., van Faassen, H., Hussack, G., Purisima, E. O., MacKenzie, C. R., and Arbabi-Ghahroudi, M. (2016) A rational engineering strategy for designing protein A-binding camelid single-domain antibodies, PLoS One, 11, e0163113, doi: 10.1371/journal.pone.0163113.
  43. Bossi, S., Ferranti, B., Martinelli, C., Capasso, P., and de Marco, A. (2010) Antibody-mediated purification of co-expressed antigen-antibody complexes, Protein Express. Purif., 72, 55-58, doi: 10.1016/j.pep.2010.01.003.
  44. Jia, B., and Jeon, C. O. (2016) High-throughput recombinant protein expression in Escherichia coli: current status and future perspectives, Open Biol., 6, 160196, doi: 10.1098/rsob.160196.
  45. Farshdari, F., Ahmadzadeh, M., Nematollahi, L., and Mohit, E. (2020) The improvement of anti-HER2 scFv soluble expression in Escherichia coli, Braz. J. Pharm. Sci., 56, doi: 10.1590/s2175-97902019000317861.
  46. Zarschler, K., Witecy, S., Kapplusch, F., Foerster, C., and Stephan, H. (2013) High-yield production of functional soluble single-domain antibodies in the cytoplasm of Escherichia coli, Microb. Cell Factor., 12, 97, doi: 10.1186/1475-2859-12-97.
  47. Farasat, A., Rahbarizadeh, F., Ahmadvand, D., and Yazdian, F. (2017) Optimization of an anti-HER2 nanobody expression using the Taguchi method, Prepar. Biochem. Biotechnol., 47, 795-803, doi: 10.1080/10826068.2017.1342259.
  48. Studier, F. W. (2005) Protein production by auto-induction in high-density shaking cultures, Protein Express. Purif., 41, 207-234, doi: 10.1016/j.pep.2005.01.016.
  49. Zou, C., Duan, X., and Wu, J. (2014) Enhanced extracellular production of recombinant Bacillus deramificans pullulanase in Escherichia coli through induction mode optimization and a glycine feeding strategy, Biores. Technol., 172, 174-179, doi: 10.1016/j.biortech.2014.09.035.
  50. Spadiut, O., Capone, S., Krainer, F., Glieder, A., and Herwig, C. (2014) Microbials for the production of monoclonal antibodies and antibody fragments, Trends Biotechnol., 32, 54-60, doi: 10.1016/j.tibtech.2013.10.002.
  51. Demain, A. L., and Vaishnav, P. (2009) Production of recombinant proteins by microbes and higher organisms, Biotechnol. Adv., 27, 297-306, doi: 10.1016/j.biotechadv.2009.01.008.
  52. Gupta, S. K., and Shukla, P. (2017) Sophisticated cloning, fermentation, and purification technologies for an enhanced therapeutic protein production: a review, Front. Pharmacol., 8, 419, doi: 10.3389/fphar.2017.00419.
  53. Vieira Gomes, A. M., Souza Carmo, T., Silva Carvalho, L., Mendonça Bahia, F., and Parachin, N. S. (2018) Comparison of yeasts as hosts for recombinant protein production, Microorganisms, 6, 38, doi: 10.3390/microorganisms6020038.
  54. Hong, M. S., Velez-Suberbie, M. L., Maloney, A. J., Biedermann, A., Love, K. R., Love, J. C., Mukhopadhyay, T. K., and Braatz, R. D. (2021) Macroscopic modeling of bioreactors for recombinant protein producing Pichia pastoris in defined medium, Biotechnol. Bioeng., 118, 1199-1212, doi: 10.1002/bit.27643.
  55. Karbalaei, M., Rezaee, S. A., and Farsiani, H. (2020) Pichia pastoris: A highly successful expression system for optimal synthesis of heterologous proteins, J. Cell. Physiol., 235, 5867-5881, doi: 10.1002/jcp.29583.
  56. De Sá Magalhães, S., and Keshavarz-Moore, E. (2021) Pichia pastoris (Komagataella phaffii) as a cost-effective tool for vaccine production for low- and middle-income countries (LMICs), Bioengineering (Basel), 8, 119, doi: 10.3390/bioengineering8090119.
  57. Baghban, R., Farajnia, S., Rajabibazl, M., Ghasemi, Y., Mafi, A., Hoseinpoor, R., Rahbarnia, L., and Aria, M. (2019) Yeast expression systems: overview and recent advances, Mol. Biotechnol., 61, 365-384, doi: 10.1007/s12033-019-00164-8.
  58. Goffeau, A., Barrell, B. G., Bussey, H., Davis, R. W., Dujon, B., Feldmann, H., Galibert, F., Hoheisel, J. D., Jacq, C., Johnston, M., Louis, E. J., Mewes, H. W., Murakami, Y., Philippsen, P., Tettelin, H., and Oliver, S. G. (1996) Life with 6000 genes, 274, 546-567, doi: 10.1126/science.274.5287.546.
  59. Gorlani, A., de Haard, H., and Verrips, T. (2012) Expression of VHHs in Saccharomyces cerevisiae, Methods Mol. Biol., 911, 277-286, doi: 10.1007/978-1-61779-968-6_17.
  60. Chee, M. K., and Haase, S. B. (2012) New and redesigned pRS plasmid shuttle vectors for genetic manipulation of Saccharomyces cerevisiae, G3 (Bethesda, Md.), 2, 515-526, doi: 10.1534/g3.111.001917.
  61. Berlec, A., and Strukelj, B. (2013) Current state and recent advances in biopharmaceutical production in Escherichia coli, yeasts and mammalian cells, J. Indust. Microbiol. Biotechnol., 40, 257-274, doi: 10.1007/s10295-013-1235-0.
  62. Carlesso, A., Delgado, R., Ruiz Isant, O., Uwangue, O., Valli, D., Bill, R. M., and Hedfalk, K. (2022) Yeast as a tool for membrane protein production and structure determination, FEMS Yeast Res., 22, foac047, doi: 10.1093/femsyr/foac047.
  63. Joosten, V., Lokman, C., van den Hondel, C. A., and Punt, P. J. (2003) The production of antibody fragments and antibody fusion proteins by yeasts and filamentous fungi, Microb. Cell Factor., 2, 1, doi: 10.1186/1475-2859-2-1.
  64. Xu, P., Raden, D., Doyle, F. J., 3rd, and Robinson, A. S. (2005) Analysis of unfolded protein response during single-chain antibody expression in Saccaromyces cerevisiae reveals different roles for BiP and PDI in folding, Metab. Engin., 7, 269-279, doi: 10.1016/j.ymben.2005.04.002.
  65. Wang, Y., Li, X., Chen, X., Nielsen, J., Petranovic, D., and Siewers, V. (2021) Expression of antibody fragments in Saccharomyces cerevisiae strains evolved for enhanced protein secretion, Microb. Cell Fact., 20, 134, doi: 10.1186/s12934-021-01624-0.
  66. Tang, H., Wang, S., Wang, J., Song, M., Xu, M., Zhang, M., Shen, Y., Hou, J., and Bao, X. (2016) N-hypermannose glycosylation disruption enhances recombinant protein production by regulating secretory pathway and cell wall integrity in Saccharomyces cerevisiae, Scientific reports, 6, 25654, doi: 10.1038/srep25654.
  67. Ahmad, M., Hirz, M., Pichler, H., and Schwab, H. (2014) Protein expression in Pichia pastoris: recent achievements and perspectives for heterologous protein production, Appl. Microbiol. Biotechnol., 98, 5301-5317, doi: 10.1007/s00253-014-5732-5.
  68. Huang, D., and Shusta, E. V. (2006) A yeast platform for the production of single-chain antibody-green fluorescent protein fusions, Appl. Environ. Microbiol., 72, 7748-7759, doi: 10.1128/aem.01403-06.
  69. Frenzel, A., Hust, M., and Schirrmann, T. (2013) Expression of recombinant antibodies, Front. Immunol., 4, 217, doi: 10.3389/fimmu.2013.00217.
  70. Chen, Q., Zhou, Y., Yu, J., Liu, W., Li, F., Xian, M., Nian, R., Song, H., and Feng, D. (2019) An efficient constitutive expression system for Anti-CEACAM5 nanobody production in the yeast Pichia pastoris, Protein Expr. Purif., 155, 43-47, doi: 10.1016/j.pep.2018.11.001.
  71. Gómez-Ramírez, I. V., Corrales-García, L. L., Possani, L. D., Riaño-Umbarila, L., and Becerril, B. (2023) Expression in Pichia pastoris of human antibody fragments that neutralize venoms of Mexican scorpions, Toxicon, 223, 107012, doi: 10.1016/j.toxicon.2022.107012.
  72. Guthrie, C., and Fink, G. R. (2002) Guide to Yeast Genetics and Molecular and Cell Biology, Part C, Gulf Professional Publishing.
  73. Gao, M.-J., Li, Z., Yu, R.-S., Wu, J.-R., Zheng, Z.-Y., Shi, Z.-P., Zhan, X.-B., and Lin, C.-C. (2012) Methanol/sorbitol co-feeding induction enhanced porcine interferon-α production by P. pastoris associated with energy metabolism shift, Bioprocess Biosystems Engin., 35, 1125-1136, doi: 10.1007/s00449-012-0697-1.
  74. Gao, M. J., Zhan, X. B., Gao, P., Zhang, X., Dong, S. J., Li, Z., Shi, Z. P., and Lin, C. C. (2015) Improving performance and operational stability of porcine interferon-α production by Pichia pastoris with combinational induction strategy of low temperature and methanol/sorbitol co-feeding, Appl. Biochem. Biotechnol., 176, 493-504, doi: 10.1007/s12010-015-1590-6.
  75. Farsiani, H., Mosavat, A., Soleimanpour, S., Sadeghian, H., Akbari Eydgahi, M. R., Ghazvini, K., Sankian, M., Aryan, E., Jamehdar, S. A., and Rezaee, S. A. (2016) Fc-based delivery system enhances immunogenicity of a tuberculosis subunit vaccine candidate consisting of the ESAT-6:CFP-10 complex, Mol. BioSystems, 12, 2189-2201, doi: 10.1039/c6mb00174b.
  76. Duranti, C., Carraresi, L., Sette, A., Stefanini, M., Lottini, T., Crescioli, S., Crociani, O., Iamele, L., De Jonge, H., Gherardi, E., and Arcangeli, A. (2018) Generation and characterization of novel recombinant anti-hERG1 scFv antibodies for cancer molecular imaging, Oncotarget, 9, 34972-34989, doi: 10.18632/oncotarget.26200.

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies