Hybrid implants based on calcium-magnesium silicate ceramic diopside as a carrier of recombinant BMP-2 and demineralized bone matrix as a scaffold: ectopic osteogenesis in intramuscular implantation in mice

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

High efficiency of hybrid implants based on calcium-magnesium silicate ceramic diopside as a carrier of recombinant BMP-2 and xenogenic demineralized bone matrix (DBM) as a scaffold for bone tissue regeneration was demonstrated previously on the model of critical size cranial defects in mice. In order to investigate the possibility of using these implants for growing autologous bone tissue using the in vivo bioreactor principle in the patient’s own body, the effectiveness of the ectopic osteogenesis induced by them in intramuscular implantation in mice was studied. At 7 µg dose of BMP-2 per implant, after 1 week we observed a dense agglomeration of cells, probably skeletal muscle satellite precursor cells, with areas of intense chondrogenesis, the initial stage of indirect osteogenesis, around the implants. After 12 weeks, a dense bone capsule of trabecular structure was formed, covered with periosteum, with mature bone marrow located in the spaces between the trabeculae. The capsule volume was about 8-10 times the volume of the original implant. There were practically no signs of inflammation and foreign body reaction. Microcomputer tomography data showed a significant increase of the relative bone volume, number of trabeculae and bone tissue density in the group with BMP-2 in comparison with the group without BMP-2. Considering that DBM can be obtained in practically unlimited quantities, of the required size and shape, and the BMP-2 used, which is obtained by synthesis in E. coli cells, is relatively inexpensive, further development of the in vivo bioreactor model based on hybrid implants from BMP-2, diopside and xenogenic DBM seems promising.

About the authors

A. S Karyagina

Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation;Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University;All-Russia Research Institute of Agricultural Biotechnology

Email: akaryagina@gmail.com
123098 Moscow, Russia;119992 Moscow, Russia;127550 Moscow, Russia

P. A Orlova

Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation

123098 Moscow, Russia

A. V Zhulina

Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation

123098 Moscow, Russia

M. S Krivozubov

Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation

123098 Moscow, Russia

T. M Grunina

Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation;All-Russia Research Institute of Agricultural Biotechnology

123098 Moscow, Russia;127550 Moscow, Russia

N. V Strukova

Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation

123098 Moscow, Russia

K. E Nikitin

Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation

123098 Moscow, Russia

V. N Manskikh

Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation;Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University

123098 Moscow, Russia;119992 Moscow, Russia

F. S Senatov

Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation;National University of Science and Technology “MISIS”

123098 Moscow, Russia;119049 Moscow, Russia

References

  1. Tan, W., Gao, C., Feng, P., Liu, Q., Liu, C., Wang, Z., Deng, Y., and Shuai, C. (2021) Dual-functional scaffolds of poly(L-lactic acid)/nanohydroxyapatite encapsulated with metformin: Simultaneous enhancement of bone repair and bone tumor inhibition, Mater. Sci. Eng. C Mater. Biol. Appl., 120, 111592, doi: 10.1016/j.msec.2020.111592.
  2. Xu, B., Zheng, P., Gao, F., Wang, W., Zhang, H., Zhang, X., Feng, X., and Liu, W. A. (2017) Mineralized high strength and tough hydrogel for skull bone regeneration, Adv. Funct. Mater., 27, 1604327, doi: 10.1002/adfm.201604327.
  3. Farokhi, M., Mottaghitalab, F., Shokrgozar, M. A., Ou, K. L., Mao, C., and Hosseinkhani, H. (2016) Importance of dual delivery systems for bone tissue engineering, J. Control. Release, 225, 152-169, doi: 10.1016/j.jconrel.2016.01.0334.
  4. Norbertczak, H. T., Fermor, H. L., Edwards, J. H., Rooney, P., Ingham, E., and Herbert, A. (2022) Decellularised human bone allograft from different anatomical sites as a basis for functionally stratified repair material for bone defects, J. Mech. Behav. Biomed. Mater., 125, 104965, doi: 10.1016/j.jmbbm.2021.104965.
  5. Huang, R. L., Kobayashi, E., Liu, K., and Li, Q. (2016) Bone graft prefabrication following the in vivo bioreactor principle, EBioMedicine, 12, 43-54, doi: 10.1016/j.ebiom.2016.09.016.
  6. Orringer, J. S., Shaw, W. W., Borud, L. J., Freymiller, E. G., Wang, S. A., and Markowitz, B. L. (1999) Total mandibular and lower lip reconstruction with a prefabricated osteocutaneous free flap, Plast. Reconstr. Surg., 104, 793-797, doi: 10.1097/00006534-199909030-00028.
  7. Warnke, P. H., Springer, I. N., Wiltfang, J., Acil, Y., Eufinger, H., Wehmöller, M., Russo, P. A., Bolte, H., Sherry, E., Behrens, E., and Terheyden, H. (2004) Growth and transplantation of a custom vascularised bone graft in a man, Lancet, 364, 766-770, doi: 10.1016/S0140-6736(04)16935-3.
  8. Warnke, P., Wiltfang, J., Springer, I., Acil, Y., Bolte, H., Kosmahl, M., Russo, P., Sherry, E., Lutzen, U., and Wolfart, S. (2006) Man as living bioreactor: fate of an exogenously prepared customized tissue-engineered mandible, Biomaterials, 27, 3163-3167, doi: 10.1016/j.biomaterials.2006.01.050.
  9. Heliotis, M., Lavery, K. M., Ripamonti, U., Tsiridis, E., and di Silvio, L. (2006) Transformation of a prefabricated hydroxyapatite/osteogenic protein-1 implant into a vascularised pedicled bone flap in the human chest, Int. J. Oral Maxillofac, Surg., 35, 265-269, doi: 10.1016/j.ijom.2005.07.013.
  10. Cheng, M., Brey, E. M., Ulusal, B. G., and Wei, F. (2006) Mandible augmentation for osseointegrated implants using tissue engineering strategies, Plast. Reconstr. Surg., 118, 1e-4e, doi: 10.1097/01.prs.0000221120.11128.1a.
  11. Mesimäki, K., Lindroos, B., Törnwall, J., Mauno, J., Lindqvist, C., Kontio, R., Miettinen, S., and Suuronen, R. (2009) Novel maxillary reconstruction with ectopic bone formation by GMP adipose stem cells, Int. J. Oral Maxillofac. Surg., 38, 201-209, doi: 10.1016/j.ijom.2009.01.001.
  12. Kokemueller, H., Spalthoff, S., Nolff, M., Tavassol, F., Essig, H., Stuehmer, C., Bormann, K. H., Rücker, M., and Gellrich, N. C. (2010) Prefabrication of vascularized bioartificial bone grafts in vivo for segmental mandibular reconstruction: experimental pilot study in sheep and first clinical application, Int. J. Oral Maxillofac Surg., 39, 379-387, doi: 10.1016/j.ijom.2010.01.010.
  13. Horch, R. E., Beier, J. P., Kneser, U., and Arkudas, A. (2014) Successful human long-term application of in situ bone tissue engineering, J. Cell. Mol. Med., 18, 1478-1485, doi: 10.1111/jcmm.12296.
  14. Scott, M. A., Levi, B., Askarinam, A., Nguyen, A., Rackohn, T., Ting, K., Soo, C., and James, A. W. (2012) Brief review of models of ectopic bone formation, Stem Cells Dev., 21, 655-667, doi: 10.1089/scd.2011.0517.
  15. Habibovic, P., and de Groot, K. (2007) Osteoinductive biomaterials - properties and relevance in bone repair, J. Tissue Engin. Regenerat. Med., 1, 25-32, doi: 10.1002/term.5.
  16. Yang, Z., Yuan, H., Tong, W., Zou, P., Chen, W., and Zhang, X. (1996) Osteogenesis in extraskeletally implanted porous calcium phosphate ceramics: variability among different kinds of animals, Biomaterials, 17, 2131-2137, doi: 10.1016/0142-9612(96)00044-0.
  17. Takaoka, K., Nakahara, H., Yoshikawa, H., Masuhara, K., Tsuda, T., and Ono, K. (1988) Ectopic bone induction on and in porous hydroxyapatite combined with collagen and bone morphogenetic protein, Clin. Orthopaed. Rel. Res., 234, 250-254.
  18. Zhang, H., Yang, L., Yang, X. G., Wang, F., Feng, J. T., Hua, K. C., Li, Q., and Hu, Y. C. (2019) Demineralized bone matrix carriers and their clinical applications: an overview, Orthopaedic Surg., 11, 725-737, doi: 10.1111/os.12509.
  19. Bartov, M. S., Gromov, A. V., Poponova, M. S., Savina, D. M., Nikitin, K. E., Grunina, T. M., Manskikh, V. N., Gra, O. A., Lunin, V. G., Karyagina, A. S., and Gintsburg, A. L. (2016) Modern approaches to research of new osteogenic biomaterials on the model of regeneration of cranial critical-sized defects in rats, Bull. Exp. Biol. Med., 162, 273-276, doi: 10.1007/s10517-017-3693-2.
  20. Громов А. В., Никитин К. Е., Карпова Т. А., Зайцев В. В., Сидорова Е. И., Андреева Е. В., Бартов М. С., Мишина Д. М., Субботина М. Е., Шевлягина Н. В., Сергиенков М. А., Соболева Л. А., Котнова А. П., Шарапова Н. Е., Семихин А. С., Диденко Л. В., Карягина А. С., Лунин В. Г. (2012) Разработка методики получения остеопластического материала на основе деминерализованного костного матрикса с максимальным содержанием нативных факторов роста костной ткани, Биотехнология, 5, 66-75.
  21. Gromov, A. V., Bartov, M. S., Orlova, P. A., Manskikh, V. N., Krivozubov, M. S., Grunina, T. M., Manukhina, M. S., Strukova, N. V., Nikitin, K. E., Lunin, V. G., Karyagina, A. S., and Gintsburg, A. L. (2019) Combined effect of bone morphogenetic protein-2 and erythropoietin on regeneration of cranial bone defects in mice, Bull. Exp. Biol. Med., 167, 408-412, doi: 10.1007/s10517-019-04538-5.
  22. Gromov, A. V., Poponova, M. S., and Karyagina, A. S. (2020) Recombinant human bone growth factor BMP-2 produced in Escherichia coli, Part 1: from protein purification to experimental models for efficacy research, Mol. Genet. Microbiol. Virol., 35, 22-31, doi: 10.3103/S0891416820010036.
  23. Karyagina, A. S., Orlova, P. A., Poponova, M. S., Bulygina, I. N., Choudhary, R., Zhulina, A. V., Grunina, T. M., Nikitin, K. E., Strukova, N. V., Generalova, M. S., Ryazanova, A. V., Kovalyova, P. A., Zimina, A. I., Lukinova, E. M., Plakhotniuk, E. D., Kirsanova, M. A., Kolesnikov, E. A., Zakharova, E. V., Manskikh, V. N., Senatov, F. S., and Gromov, A. V. (2022) Hybrid implants based on calcium-magnesium silicate ceramics diopside as a carrier of recombinant BMP-2 and demineralized bone matrix as a scaffold: dynamics of reparative osteogenesis in a mouse craniotomy model, Biochemistry (Moscow), 87, 1277-1291, doi: 10.1134/S0006297922110074.
  24. Choudhary, R., Venkatraman, S. K., Bulygina, I., Senatov, F., Kaloshkin, S., Anisimova, N., Kiselevskiy, M., Knyazeva, M., Kukui, D., Walther, F., and Swamiappan, S. (2021) Biomineralization, dissolution and cellular studies of silicate bioceramics prepared from eggshell and rice husk, Mater. Sci. Engin. C, 118, 111456, doi: 10.1016/j.msec.2020.111456.
  25. Plantz, M. A., Minardi, S., Lyons, J. G., Greene, A. C., Ellenbogen, D. J., Hallman, M., Yamaguchi, J. T., Jeong, S., Yun, C., Jakus, A. E., Blank, K. R., Havey, R. M., Muriuki, M., Patwardhan, A. G., Shah, R. N., Hsu, W. K., Stock, S. R., and Hsu, E. L. (2021) Osteoinductivity and biomechanical assessment of a 3D printed demineralized bone matrix-ceramic composite in a rat spine fusion model, Acta Biomater., 127, 146-158, doi: 10.1016/j.actbio.2021.03.060.
  26. Karyagina, A. S., Boksha, I. S., Grunina, T. M., Demidenko, A. V., Poponova, M. S., Sergienko, O. V., Lyashchuk, A. M., Galushkina, Z. M., Soboleva, L. A., Osidak, E. O., Bartov, M. S., Gromov, A. V., and Lunin, V. G. (2017) Two variants of recombinant human bone morphogenetic protein 2 (rhBMP-2) with additional protein domains: synthesis in an Escherichia coli heterologous expression system, Biochemistry (Moscow), 82, 613-624, doi: 10.1134/S0006297917050091.
  27. Bryan, J. H. D. (1954) Differential staining with a mixture of safranin and fast green FCF, Stain Technol., 30, 153-157.
  28. Heidenhain, M. (1905) Zeitschrift für wissenschaftliche Mikroskopie und für mikroskopische Technik, S. Hirzel, Leipzig, 22, pp. 339.
  29. Wu, C., and Chang, J. (2013) A review of bioactive silicate ceramics, Biomed. Mater., 8, 032001, doi: 10.1088/1748-6041/8/3/032001.
  30. Oda, S., Kinoshita, A., Higuchi, T., Shizuya, T., and Ishikawa, I. (1997) Ectopic bone formation by biphasic calcium phosphate (BCP) combined with recombinant human bone morphogenetic protein-2 (rhBMP-2), J. Med. Dent. Sci., 44, 53-62.
  31. Zimina, A., Senatov, F., Choudhary, R., Kolesnikov, E., Anisimova, N., Kiselevskiy, M., Orlova, P., Strukova, N., Generalova, M., Manskikh, V., Gromov, A., and Karyagina, A. (2020) Biocompatibility and physico-chemical properties of highly porous PLA/HA scaffolds for bone reconstruction, Polymers, 12, 2938, doi: 10.3390/polym12122938.
  32. Senatov, F., Gulbanu, A., Orlova, P., Bartov, M., Grunina, T., Kolesnikov, E., Maksimkin, A., Kaloshkin, S., Poponova, M., Nikitin, K., Krivozubov, M., Strukova, N., Manskikh, V., Anisimova, N., Kiselevskiy, M., Scholz, R., Knyazeva, M., Walther, F., Lunin, V., Gromov, A., and Karyagina, A. (2020) Biomimetic UHMWPE/HA scaffolds with rhBMP-2 and erythropoietin for reconstructive surgery, Mater. Sci. Eng. C. Mater. Biol. Appl, 111, 110750, doi: 10.1016/j.msec.2020.110750.
  33. Senatov, F., Maksimkin, A., Chubrik, A., Kolesnikov, E., Orlova, P., Krivozubov, M., Nikitin, K., Gromov, A., and Karyagina, A. (2021) Osseointegration evaluation of UHMWPE and PEEK-based scaffolds with BMP-2 using model of critical-size cranial defect in mice and push-out test, J. Mech. Behav. Biomed. Mater., 119, 104477, doi: 10.1016/j.jmbbm.2021.104477.
  34. Senatov, F., Zimina, A., Chubrik, A., Kolesnikov, E., Permyakova, E., Voronin, A., Poponova, M., Orlova, P., Grunina, T., Nikitin, K., Krivozubov, M., Strukova, N., Generalova, M., Ryazanova, A., Manskikh, V., Lunin, V., Gromov, A., and Karyagina, A. (2022) Effect of recombinant BMP-2 and erythropoietin on osteogenic properties of biomimetic PLA/PCL/HA and PHB/HA scaffolds in critical-size cranial defects model, Mater. Sci. Eng. C. Mater. Biol. Appl, 135, 112680, doi: 10.1016/j.msec.2022.112680.
  35. Karpov, T. E., Peltek, O. O., Muslimov, A. R., Tarakanchikova, Y. V., Grunina, T. M., Poponova, M. S., Karyagina, A. S., Chernozem, R. V., Pariy, I. O., Mukhortova, Y. R., Zhukov, M. V., Surmeneva, M. A., Zyuzin, M. V., Timin, A. S., and Surmenev, R. A. (2020) Development of optimized strategies for growth factor incorporation onto electrospun fibrous scaffolds to promote prolonged release, ACS Appl. Mater. Interfaces, 12, 5578-5592, doi: 10.1021/acsami.9b20697.
  36. Chubrik, A., Senatov, F., Kolesnikov, E., Orlova, P., Poponova, M., Grunina, T., Bartov, M., Nikitin, K., Krivozubov, M., Generalova, M., Manskikh, V., Lunin, V., Gromov, A., and Karyagina, A. (2020) Highly porous PEEK and PEEK/HA scaffolds with Escherichia coli-derived recombinant BMP-2 and erythropoietin for enhanced osteogenesis and angiogenesis, Polym. Test., 87, 106518, doi: 10.1016/j.polymertesting.2020.

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies