SkQ1 improves immune status and normalises the activity of antioxidant and nadph-generating enzymes in adjuvant-induced rheumatoid arthritis in rats

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Rheumatoid arthritis (RA) is a severe systemic autoimmune inflammatory disease. Oxidative stress and excessive formation of mitochondrial reactive oxygen species (ROS) are now considered to be the central pathogenetic mechanisms of connective tissue component destruction and the factors responsible for a highly active inflammatory process and autoimmune response. The aim of the present work was to evaluate the effect of mitochondrial-directed antioxidant 10-(6′-plastoquinonyl)decyltriphenylphosphonium (SkQ1) on immune status, intensity of free radical-induced oxidation and functioning of antioxidant system (AOS) and NADPH-generating enzymes in rats with adjuvant-induced RA. Laboratory animals were divided into 4 groups: a control group; a group of animals with RA; animals injected intraperitoneally with SkQ1 at a dose of 1250 nmol/kg every 24 hours during the next 8 days from day 7 of RA development, and animals given SkQ1 at a dose of 625 nmol/kg according to the above scheme. Material for the study was taken on day 15 after the start of the experiment. The rate of erythrocyte sedimentation, the level of circulating immune complexes, and the concentration of immunoglobulins A, M and G were determined in rats by enzyme immunoassay. The intensity of free radical-induced oxidation was assessed by iron-induced biochemiluminescence, diene conjugate content and aconitate hydratase activity. Enzyme activity and metabolite content in animal tissues were analysed spectrophotometrically. The results of the work showed that the development of RA was associated with an increase in the indicators of immune response and intensity of free radical-induced oxidation. The development of an imbalance in AOS functioning and an increase in the activity of NADPH-generating enzymes was also observed. The administration of SkQ1 resulted in a dose-dependent change in the oxidative status indicators towards the control, which was accompanied by the normalization of the immune status parameters. It seems that the tested compound decreased the level of mitochondrial ROS, resulting in an inhibition of the inflammatory response. The consequence of these changes could be inhibition of free radical generation by immunocompetent cells and subsequent mitigation of the severity of oxidative stress in the tissues.

About the authors

E. D Kryl'skii

Voronezh State University

Email: evgenij.krylsky@yandex.ru
394018 Voronezh, Russia

T. N Popova

Voronezh State University

394018 Voronezh, Russia

D. A Zhaglin

Voronezh State University

394018 Voronezh, Russia

G. A Razuvaev

Voronezh State University

394018 Voronezh, Russia

S. A Oleynik

Voronezh State University

394018 Voronezh, Russia

References

  1. Radu, A. F., and Bungau, S. G. (2021) Management of rheumatoid arthritis: an overview, Cells, 10, 2857, doi: 10.3390/cells10112857.
  2. Da Fonseca, L. J. S., Nunes-Souza, V., Goulart, M. O. F., and Rabelo, L. A. (2019) Oxidative stress in rheumatoid arthritis: what the future might hold regarding novel biomarkers and add-on therapies, Oxid. Med. Cell. Longev., 2019, 7536805, doi: 10.1155/2019/7536805.
  3. Phull, A. R., Nasir, B., Ul Haq, I., and Kim, S. J. (2018) Oxidative stress, consequences and ROS mediated cellular signaling in rheumatoid arthritis, Chem. Biol. Interact., 281, 121-136, doi: 10.1016/j.cbi.2017.12.024.
  4. Ferreira, H. B., Melo, T., Paiva, A., and Domingues, M. R. (2021) Insights in the role of lipids, oxidative stress and inflammation in rheumatoid arthritis unveiled by new trends in lipidomic investigations, Antioxidants, 10, 45, doi: 10.3390/antiox10010045.
  5. Mititelu, R. R., Pădureanu, R., Băcănoiu, M., Pădureanu, V., Docea, A. O., Calina, D., Barbulescu, A. L., and Buga, A. M. (2020) Inflammatory and oxidative stress markers - mirror tools in rheumatoid arthritis, Biomedicines, 8, 125, doi: 10.3390/biomedicines8050125.
  6. Del Buono, M., Abbate, A., and Toldo, S. (2018) Interplay of inflammation, oxidative stress and cardiovascular disease in rheumatoid arthritis, Heart, 104, 1991-1992, doi: 10.1136/heartjnl-2018-313313.
  7. Radovanović-Dinić, B., Tešić-Rajković, S., Zivkovic, V., and Grgov, S. (2018) Clinical connection between rheumatoid arthritis and liver damage, Rheumatol. Int., 38, 715-724, doi: 10.1007/s00296-018-4021-5.
  8. Steinz, M. M., Santos-Alves, E., and Lanner, J. T. (2020) Skeletal muscle redox signaling in rheumatoid arthritis, Clin. Sci., 134, 2835-2850, doi: 10.1042/CS20190728.
  9. Lee, S. H., Chang, D. K., Goel, A., Boland, C. R., Bugbee, W., Boyle, D. L., Firestein, G. S. (2003) Microsatellite instability and suppressed DNA repair enzyme expression in rheumatoid arthritis, J. Immunol., 170, 2214-2220, doi: 10.4049/jimmunol.170.4.2214.
  10. Biniecka, M., Fox, E., Gao, W., Ng, C. T., Veale, D. J., Fearon, U., and O'Sullivan, J. (2011) Hypoxia induces mitochondrial mutagenesis and dysfunction in inflammatory arthritis, Arthritis Rheum., 63, 2172-2182, doi: 10.1002/art.30395.
  11. Harty, L. C., Biniecka, M., O'Sullivan, J., Fox, E., Mulhall, K., Veale, D. J., and Fearon, U. (2012) Mitochondrial mutagenesis correlates with the local inflammatory environment in arthritis, Ann. Rheum. Dis., 71, 582-588, doi: 10.1136/annrheumdis-2011-200245.
  12. Kan, S., Duan, M., Liu, Y., Wang, C., and Xie, J. (2014) Role of mitochondria in physiology of chondrocytes and diseases of osteoarthritis and rheumatoid arthritis, Cartilage, 13, 1102S-1121S, doi: 10.1177/19476035211063858.
  13. Oğul, Y., Gür, F., Cengiz, M., Gür, B., Sarı, R. A., and Kızıltunç, A. (2021) Evaluation of oxidant and intracellular anti-oxidant activity in rheumatoid arthritis patients: in vivo and in silico studies, Int. Immunopharmacol., 97, 107654, doi: 10.1016/j.intimp.2021.107654.
  14. Mateen, S., Moin, S., Khan, A. Q., Zafar, A., Fatima, N., and Shahzad, S. (2017) Role of hydrotherapy in the amelioration of oxidant-antioxidant status in rheumatoid arthritis patients, Int. J. Rheum. Dis., 21, 1822-1830, doi: 10.1111/1756-185X.13118.
  15. Behl, T., Upadhyay, T., Singh, S., Chigurupati, S., Alsubayiel, A. M., Mani, V., Vargas-De-La-Cruz, C., Uivarosan, D., Bustea, C., Sava, C., Stoicescu, M., Radu, A. F., Bungau, S. G. (2021) Polyphenols targeting MAPK mediated oxidative stress and inflammation in rheumatoid arthritis, Molecules, 26, 6570, doi: 10.3390/molecules26216570.
  16. Fan, X. X., Xu, M. Z., Leung, E. L. H., Jun, C., Yuan, Z., and Liu, L. (2020) ROS-responsive berberine polymeric micelles effectively suppressed the inflammation of rheumatoid arthritis by targeting mitochondria, Nano Micro Lett., 12, 76, doi: 10.1007/s40820-020-0410-x.
  17. D'Amico, D., Olmer, M., Fouassier, A. M., Valdés, P., Andreux, P. A., Rinsch, C., and Lotz, M. (2022) Urolithin A improves mitochondrial health, reduces cartilage degeneration, and alleviates pain in osteoarthritis, Aging Cell, 21, e13662, doi: 10.1111/acel.13662.
  18. Сенокосова Е. А., Крутицкий С. С., Груздева О. В., Антонова Л. В., Скулачев М. В., Григорьев Е. В. (2022) Исследование антиоксидантного эффекта митохондриально-направленного антиоксиданта SkQ1 на модели изолированного сердца крысы, Общая реаниматология, 18, 36-44, doi: 10.15360/1813-9779-2022-4-36-44.
  19. Skulachev, V. P., Anisimov, V. N., Antonenko, Y. N., Bakeeva, L. E., Chernyak, B. V., Erichev, V. P., Filenko, O. F., Kalinina, N. I., Kapelko, V. I., Kolosova, N. G., Kopnin, B. P., Korshunova, G. A., Lichinitser, M. R., Obukhova, L. A., Pasyukova, E. G., Pisarenko, O. I., Roginsky, V. A., Ruuge, E. K., Senin, I. I., Severina, I. I., Skulachev, M. V., Spivak, I. M., Tashlitsky, V. N., Tkachuk, V. A., Vyssokikh, M. Y., Yaguzhinsky, L. S., and Zorov, D. B. (2009) An attempt to prevent senescence: a mitochondrial approach, Biochim. Biophys. Acta, 1787, 437-461, doi: 10.1016/j.bbabio.2008.12.008.
  20. Wei, Y., Troger, A., Spahiu, V., Perekhvatova, N., Skulachev, M., Petrov, A., Chernyak, B., and Asbell, P. (2019) The role of SKQ1 (visomitin) in inflammation and wound healing of the ocular surface, Ophthalmol. Ther., 8, 63-73, doi: 10.1007/s40123-018-0158-2.
  21. Andreev-Andrievskiy, A. A., Kolosova, N. G., Stefanova, N. A., Lovat, M. V., Egorov, M. V., Manskikh, V. N., Zinovkin, R. A., Galkin, I. I., Prikhodko, A. S., Skulachev, M. V., and Lukashev, A. N. (2016) Efficacy of mitochondrial antioxidant plastoquinonyl-decyl-triphenylphosphonium bromide (SkQ1) in the rat model of autoimmune arthritis, Oxid. Med. Cell. Longev., 2016, 8703645, doi: 10.1155/2016/8703645.
  22. Taurog, J. D., Argentieri, D. C., McReynolds, R. A. (1988) Adjuvant arthritis, Methods Enzymol., 162, 339-355, doi: 10.1016/0076-6879(88)62089-1.
  23. Луговская С. А., Морозова В. Т., Почтарь М. Е., Долгов В. В. (2014) Лабораторная гематология, Триада, Тверь.
  24. Piskarev, I. M., Trofimova, S. V., Ivanova, I. P., and Burkhina, O. E. (2015) Investigation of the level of free-radical processes in substrates and biological samples using induced chemiluminescence, Biophysics, 60, 400-408, doi: 10.1134/S0006350915030148.
  25. Recknagel, R. O., and Ghoshal, A. K. (1966) Lipoperoxidation of rat liver microsomal lipids induced by carbon tetrachloride, Nature, 210, 1162-1163, doi: 10.1038/2101162a0.
  26. Nishikimi, M., Rao, N. A., and Yagi, K. (1972) The occurrence of superoxide anion in the reaction of reduced phenazine methosulphate and molecular oxygen, Biochem. Biophys. Res. Commun., 46, 849-864, doi: 10.1016/s0006-291x(72)80218-3.
  27. Góth, L. (1991) A simple method for determination of serum catalase activity and revision of reference range, Clin. Chim. Acta, 196, 143-151, doi: 10.1016/0009-8981(91)90067-m.
  28. Paglia, D. E., and Valentine, W. N. (1967) Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase, Lab. Clin. Med., 70, 158-169.
  29. Zanetti, G. (1979) Rabbit liver glutathione reductase. Purification and properties, Arch. Biochem. Biophys., 198, 241-246, doi: 10.1016/0003-9861(79)90415-6.
  30. Warholm, M., Guthenberg, C., Von Bahr, C., and Mannervik, B. (1985) Glutathione transferases from human liver, Method Enzymol., 113, 499-504, doi: 10.1016/s0076-6879(85)13065-x.
  31. Ellman, G. L. (1959) Tissue sulfhydryl groups, Arch Biochem Biophys., 82, 70-77, doi: 10.1016/0003-9861(59)90090-6.
  32. Афанасьев В. Г., Зайцев В. С., Вольфсон Т. И. (1973) К микрометоду определения лимонной кислоты в сыворотке крови с помощью фотоэлектроколориметра, Лаб. дело, 4, 115-116.
  33. López-Armada, M. J., Fernández-Rodríguez, J. A., and Blanco, F. J. (2022) Mitochondrial dysfunction and oxidative stress in rheumatoid arthritis, Antioxidants, 11, 1151, doi: 10.3390/antiox11061151.
  34. Liu, R. Z., Zhang, S., Zhang, W., Zhao, X. Y., and Du, G. H. (2023) Baicalein attenuates brain iron accumulation through protecting aconitase 1 from oxidative stress in rotenone-induced Parkinson's disease in rats, Antioxidants, 12, 12, doi: 10.3390/antiox12010012.
  35. Bashir, N., Ahmad, S. B., Rehman, M. U., Muzamil, S., Bhat, R. R., Mir, M. U. R., Shazly, G. A., Ibrahim, M. A., Elossaily, G. M., Sherif, A. Y., and Kazi, M. (2021) Zingerone (4-(four-hydroxy-3-methylphenyl) butane-two-1) modulates adjuvant-induced rheumatoid arthritis by regulating inflammatory cytokines and antioxidants, Redox Rep., 26, 62-70, doi: 10.1080/13510002.2021.1907518.
  36. Lu, S., Liu, T., Li, H., and Fan, H. (2019) Fangchinoline supplementation attenuates inflammatory markers in experimental rheumatoid arthritis-induced rats, Biomed. Pharmacother., 111, 142-150, doi: 10.1016/j.biopha.2018.12.043.
  37. Dai, W., Qi, C., and Wang, S. (2018) Synergistic effect of glucosamine and vitamin E against experimental rheumatoid arthritis in neonatal rats, Biomed. Pharmacother., 105, 835-840, doi: 10.1016/j.biopha.2018.05.136.
  38. Arablou, T., Aryaeian, N., Djalali, M., Shahram, F., and Rasouli, L. (2019) Association between dietary intake of some antioxidant micronutrients with some inflammatory and antioxidant markers in active rheumatoid arthritis patients, Int. J. Vitamin Nutr. Res., 89, 238-245, doi: 10.1024/0300-9831/a000255.
  39. Demyanenko, I. A., Popova, E. N., Zakharova, V. V., Ilyinskaya, O. P., Vasilieva, T. V., Romashchenko, V. P., Fedorov, A. V., Manskikh, V. N., Skulachev, M. V., Zinovkin, R. A., Pletjushkina, O. Y., Skulachev, V. P., and Chernyak, B. V. (2015) Mitochondria-targeted antioxidant SkQ1 improves impaired dermal wound healing in old mice, Aging (Albany NY), 7, 475-485, doi: 10.18632/aging.100772.
  40. Demyanenko, I. A., Zakharova, V. V., Ilyinskaya, O. P., Vasilieva, T. V., Fedorov, A. V., Manskikh, V. N., Zinovkin, R. A., Pletjushkina, O. Y., Chernyak, B. V., Skulachev, V. P., and Popova, E. N. (2017) Mitochondria-targeted antioxidant SkQ1 improves dermal wound healing in genetically diabetic mice, Oxid. Med. Cell. Longev., 2017, 6408278, doi: 10.1155/2017/6408278.
  41. Riveiro-Naveira, R. R., Valcárcel-Ares, M. N., Almonte-Becerril, M., Vaamonde-García, C., Loureiro, J., Hermida-Carballo, L., López-Peláez, E., Blanco, F. J., López-Armada, M. J. (2016) Resveratrol lowers synovial hyperplasia, inflammatory markers and oxidative damage in an acute antigen-induced arthritis model, Rheumatology, 55, 1889-1900, doi: 10.1093/rheumatology/kew255.
  42. Kryl'skii, E. D., Popova, T. N., and Kirilova, E. M. (2015) Activity of glutathione antioxidant system and NADPH-generating enzymes in rats with experimental rheumatoid arthritis, Bull. Exp. Biol. Med., 160, 24-27, doi: 10.1007/s10517-015-3089-0.
  43. Крыльский Е. Д., Попова Т. Н., Кирилова Е. М., Сафонова О. А. (2016) Воздействие липоевой кислоты на активность каспаз, показатели иммунного и антиоксидантного статуса при ревматоидном артрите у крыс, Биоорг. химия, 42, 431-439, doi: 10.7868/S0132342316040138.
  44. Ponist, S., Zloh, M., and Bauerova, K. (2019) in Animal Models in Medicine and Biology (Tvrdá, E., and Yenisetti, S. C., eds), IntechOpen, London, pp. 195-216.
  45. Cai, W. W., Yu, Y., Zong, S. Y., and Wei, F. (2020) Metabolic reprogramming as a key regulator in the pathogenesis of rheumatoid arthritis, Inflamm. Res., 69, 1087-1101, doi: 10.1007/s00011-020-01391-5.
  46. Benna, J. E., Hayem, G., Dang, P. M. C., Fay, M., Chollet-Martin, S., Elbim, C., Meyer, O., and Gougerot-Pocidalo, M. A. (2002) NADPH oxidase priming and p47phox phosphorylation in neutrophils from synovial fluid of patients with rheumatoid arthritis and spondylarthropathy, Inflammation, 26, 273-278, doi: 10.1023/a:1021460517468.
  47. Shi, Q., Abusarah, J., Baroudi, G., Fernandes, J. C., Fahmi, H., and Benderdour, M. (2012) Ramipril attenuates lipid peroxidation and cardiac fibrosis in an experimental model of rheumatoid arthritis, Arthritis Res. Ther., 14, R223, doi: 10.1186/ar4062.
  48. Nadeem, A., Al-Harbi, N. O., Ahmad, S. F., Ibrahim, K. E., Siddiqui, N., and Al-Harbi, M. M. (2018) Glucose-6-phosphate dehydrogenase inhibition attenuates acute lung injury through reduction in NADPH oxidase-derived reactive oxygen species, Clin. Exp. Immunol., 191, 279-287, doi: 10.1111/cei.13097.
  49. Martínez-Navarro, F. J., Martínez-Morcillo, F. J., López-Muñoz, A., Pardo-Sánchez, I., Martínez-Menchón, T., Corbalán-Vélez, R., Cayuela, M. L., Pérez-Oliva, A. B., García-Moreno, D., and Mulero, V. (2020) The vitamin B6-regulated enzymes PYGL and G6PD fuel NADPH oxidases to promote skin inflammation, Dev. Comp. Immunol., 108, 103666, doi: 10.1016/j.dci.2020.103666.

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies