The effect of hippocampal overexpression of dopamine neurotrophic factor (CDNF) on the behavior of mice with genetic predisposition to depressive-like behavior

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Cerebral dopamine neurotrophic factor (CDNF) is the promising tool for treatment of Parkinson’s disease. However, its role in the regulation of non-motor behavior, including various psychopathologies, remains unclear. In this regard, the aim of present work was to study the effect of CDNF overexpression in the hippocampus on the behavior of ASC mice (Antidepressant Sensitive Cataleptics) with a genetic predisposition to depression-like behavior. CDNF overexpression in mouse hippocampal neurons was induced using an adeno-associated viral vector. Four weeks after stereotaxic injection of the AAV-CDNF construct into the dorsal hippocampus, home cage behavior, exploratory, anxiety and depressive-like behaviors, as well as spatial and associative learning were assessed. We found significant improvements in the dynamics of spatial learning in the Morris water maze in CDNF-overexpressing animals. At the same time, no effect of CDNF was found on other studied behaviors. The behavior of the experimental animals in the home cage conditions did not differ from that in the control group, except for a decrease in the total amount of food eaten and a slight increase in the number of sleep episodes in the light phase of the day. In the present study we also attempted to determine the molecular basis for the above mentioned changes by genes expression assessment. We did not find significant changes in the mRNA level of key kinases, genes involved in neuroplasticity and neuronal survival as well as genes encoding receptors for the main neurotransmitter systems. However, animals overexpressing CDNF show increased lever of spliced Xbp indicating activation of the Ire1α/Xbp1 pathway traditionally associated with ER stress. Immunohistochemical analysis showed that CDNF was co-localized with the ER marker calreticulin. Thus, the effects of endogenous CDNF on behavior that we have found may be mediated by a specific molecular cascade, which emphasizes its difference from classical neurotrophic factors.

About the authors

Y. P Kaminskaya

Federal research center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences

630090 Novosibirsk, Russia

T. V Ilchibaeva

Federal research center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences

630090 Novosibirsk, Russia

N. V Khotskin

Federal research center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences

630090 Novosibirsk, Russia

V. S Naumenko

Federal research center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences

630090 Novosibirsk, Russia

A. S Tsybko

Federal research center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences

Email: antoncybko@mail.ru
630090 Novosibirsk, Russia

References

  1. Lindholm, P., Voutilainen, M. H., Laurén, J., Peränen, J., Leppänen, V.-M., Andressoo, J.-O., Lindahl, M., Janhunen, S., Kalkkinen, N., Timmusk, T., Tuominen, R. K., and Saarma, M. (2007) Novel neurotrophic factor CDNF protects and rescues midbrain dopamine neurons in vivo, Nature, 448, 73-77, doi: 10.1038/nature05957.
  2. Parkash, V., Lindholm, P., Peränen, J., Kalkkinen, N., Oksanen, E., Saarma, M., Leppänen, V.-M, and Goldman, A. (2009) The structure of the conserved neurotrophic factors MANF and CDNF explains why they are bifunctional, Protein Eng. Des. Sel., 22, 233-241, doi: 10.1093/protein/gzn080.
  3. Voutilainen, M. H., Bäck, S., Peränen, J., Lindholm, P., Raasmaja, A., Männistö, P. T., Saarma, M., and Tuominen, R. K. (2011) Chronic infusion of CDNF Prevents 6-OHDA-induced deficits in a rat model of Parkinson's disease, Exp. Neurol., 228, 99-108, doi: 10.1016/j.expneurol.2010.12.013.
  4. Lindholm, D., Wootz, H., and Korhonen, L. (2006) ER stress and neurodegenerative diseases, Cell Death Differ., 13, 385-392, doi: 10.1038/sj.cdd.4401778.
  5. Garea-Rodríguez, E., Eesmaa, A., Lindholm, P., Schlumbohm, C., König, J., Meller, B., Krieglstein, K., Helms, G., Saarma, M., and Fuchs, E. (2016) Comparative analysis of the effects of neurotrophic factors CDNF and GDNF in a nonhuman primate model of Parkinson's disease, PLoS One, 11, e0149776, doi: 10.1371/journal.pone.0149776.
  6. Raykhel, I., Alanen, H., Salo, K., Jurvansuu, J., Van, D. N., Latva-Ranta, M., and Ruddock, L. (2007) A molecular specificity code for the three mammalian KDEL receptors, J. Cell Biol., 179, 1193-1204, doi: 10.1083/jcb.200705180.
  7. Lindholm, P., and Saarma, M. (2010) Novel CDNF/MANF family of neurotrophic factors, Dev. Neurobiol., 70, 360-371, doi: 10.1002/dneu.20760.
  8. Apostolou, A., Shen, Y., Liang, Y., Luo, J., and Fang, S. (2008) Armet, a UPR-upregulated protein, inhibits cell proliferation and ER stress-induced cell death, Exp. Cell Res., 314, 2454-2467, doi: 10.1016/j.yexcr.2008.05.001.
  9. Bruhn, H. (2005) A short guided tour through functional and structural features of saposin-like proteins, Biochem. J., 389, 249-257, doi: 10.1042/BJ20050051.
  10. Mätlik, K., Yu, L., Eesmaa, A., Hellman, M., Lindholm, P., Peränen, J., Galli, E., Anttila, J., Saarma, M., Permi, P., Airavaara, M., and Arumäe, U. (2015) Role of two sequence motifs of mesencephalic astrocyte-derived neurotrophic factor in its survival-promoting activity, Cell Death Dis., 6, e2032, doi: 10.1038/cddis.2015.371.
  11. Božok, V., Yu, L., Palgi, J., and Arumäe, U. (2018) Antioxidative CXXC peptide motif from mesencephalic astrocyte-derived neurotrophic factor antagonizes programmed cell death, Front. Cell Dev. Biol., 6, 106, doi: 10.3389/fcell.2018.00106.
  12. Lindahl, M., Chalazonitis, A., Palm, E., Pakarinen, E., Danilova, T., Phamb, T. D., Setlikb, W., Rao, M., Võikar, V., Huotari, J., Kopra, J., Andressooa, J.-O., Piepponend, P. T., Airavaaraa, M., Panhelainen, A., Gershon, M. D., and Saarma, M. (2020) Cerebral dopamine neurotrophic factor-deficiency leads to degeneration of enteric neurons and altered brain dopamine neuronal function in mice, Neurobiol. Dis., 134, 104696, doi: 10.1016/j.nbd.2019.104696.
  13. Chen, Y.-C. C., Baronio, D., Semenova, S., Abdurakhmanova, S., and Panula, P. (2020) Cerebral dopamine neurotrophic factor regulates multiple neuronal subtypes and behavior, J. Neurosci., 40, 6146-6164, doi: 10.1523/JNEUROSCI.2636-19.2020.
  14. Kemppainen, S., Lindholm, P., Galli, E., Lahtinen, H.-M. M., Koivisto, H., Hämäläinena, E., Saarmab, M., and Tanila, H. (2015) Cerebral dopamine neurotrophic factor improves long-term memory in APP/PS1 transgenic mice modeling Alzheimer's disease as well as in wild-type mice, Behav. Brain Res., 291, 1-11, doi: 10.1016/j.bbr.2015.05.002.
  15. Voutilainen, M. H., De Lorenzo, F., Stepanova, P., Bäck, S., Yu, L.-Y., Lindholm, P., Pörsti, E., Saarma, M., Männistö, P. T., and Tuominen, R. K. (2017) Evidence for an additive neurorestorative effect of simultaneously administered CDNF and GDNF in hemiparkinsonian rats: implications for different mechanism of action, eNeuro, 4, ENEURO.0117-16.2017, doi: 10.1523/ENEURO.0117-16.2017.
  16. Kesner, R. P. (2018) An analysis of dentate gyrus function (an update), Behav. Brain Res., 354, 84-91, doi: 10.1016/J.BBR.2017.07.033.
  17. Papp, G., Witter, M. P., and Treves, A. (2007) The CA3 network as a memory store for spatial representations, Learn. Mem., 14, 732-744, doi: 10.1101/LM.687407.
  18. Fredes, F., and Shigemoto, R. (2021) The role of hippocampal mossy cells in novelty detection, Neurobiol. Learn. Mem., 183, 107486, doi: 10.1016/J.NLM.2021.107486.
  19. Sun, D., Mei, L., and Xiong, W. C. (2023) Dorsal dentate gyrus, a key regulator for mood and psychiatric disorders, Biol. Psychiatry, 93, 1071-1080, doi: 10.1016/J.BIOPSYCH.2023.01.005.
  20. Kondaurova, E. M., Bazovkina, D. V., Kulikov, A. V., and Popova, N. K. (2006) Selective Breeding for catalepsy changes the distribution of microsatellite D13Mit76 alleles linked to the 5-HT1A serotonin receptor gene in mice, Genes, Brain Behav., 5, 596-601, doi: 10.1111/j.1601-183X.2006.00212.x.
  21. Kulikov, A. V., Bazovkina, D. V., Kondaurova, E. M., and Popova, N. K. (2008) Genetic structure of hereditary catalepsy in mice, Genes Brain Behav., 7, 506-512, doi: 10.1111/j.1601-183X.2008.00387.x.
  22. Kulikov, A. V., Kozlachkova, E. Y., Maslova, G. B., and Popova, N. K. (1993) Inheritance of predisposition to catalepsy in mice, Behav. Genet., 23, 379-384, doi: 10.1007/BF01067439.
  23. Tikhonova, M. A., Lebedeva, V. V., Kulikov, A. V., Bazovkina, D. V., and Popova, N. K. (2006) Effect of imipramine on the behavior and cerebral 5-HT1A serotonin receptors in mice genetically predisposed to catalepsy, Bull. Exp. Biol. Med., 141, 48-50, doi: 10.1007/s10517-006-0090-7.
  24. Tikhonova, M. A., Alperina, E. L., Tolstikova, T. G., Bazovkina, D. V., Di, V. Y., Idova, G. V., Kulikov, A. V., and Popova, N. K. (2010) Effects of chronic fluoxetine treatment on catalepsy and the immune response in mice with a genetic predisposition to freezing reactions: the roles of types 1A and 2A serotonin receptors and the Tph2 and SERT genes, Neurosci. Behav. Physiol., 40, 521-527, doi: 10.1007/s11055-010-9291-7.
  25. Базовкина Д. В., Куликов А. В., Кондаурова Е. М., Попова Н. К. (2005) Селекция на предрасположенность к каталепсии усиливает депрессивно-подобные характеристики поведения у мышей, Генетика, 41, 1222-1228.
  26. Naumenko, V. S., Kondaurova, E. M., Bazovkina, D. V., Tsybko, A. S., Tikhonova, M. A., Kulikov, A. V., and Popova, N. K. (2012) Effect of brain-derived neurotrophic factor on behavior and key members of the brain serotonin system in genetically predisposed to behavioral disorders mouse strains, Neuroscience, 214, 59-67, doi: 10.1016/j.neuroscience.2012.04.031.
  27. Björkholm, C., and Monteggia, L. M. (2016) BDNF - a key transducer of antidepressant effects, Neuropharmacology, 102, 72-79, doi: 10.1016/j.neuropharm.2015.10.034.
  28. Caviedes, A., Lafourcade, C., Soto, C., and Wyneken, U. (2017) BDNF/NF-ΚB signaling in the neurobiology of depression, Curr. Pharm. Des., 23, 3154-3163, doi: 10.2174/1381612823666170111141915.
  29. Mondal, A. C., and Fatima, M. (2019) Direct and indirect evidences of BDNF and NGF as key modulators in depression: role of antidepressants treatment, Int. J. Neurosci., 129, 283-296, doi: 10.1080/00207454.2018.1527328.
  30. Naumenko, V. S., Bazovkina, D. V., Semenova, A. A., Tsybko, A. S., Il'chibaeva, T. V., Kondaurova, E. M., and Popova, N. K. (2013) Effect of glial cell line-derived neurotrophic factor on behavior and key members of the brain serotonin system in mouse strains genetically predisposed to behavioral disorders, J. Neurosci. Res., 91, 1628-1638, doi: 10.1002/jnr.23286.
  31. Chen, S.-H., Haam, J., Walker, M., Scappini, E., Naughton, J., and Martin, N. P. (2019) Recombinant viral vectors as neuroscience tools, Curr. Protoc. Neurosci., 87, e67, doi: 10.1002/cpns.67.
  32. Kondaurova, E. M., Plyusnina, A. V., Ilchibaeva, T. V., Eremin, D. V., Rodnyy, A. Y., Grygoreva, Y. D., and Naumenko, V. S. (2021) Effects of a Cc2d1a/Freud-1 knockdown in the hippocampus on behavior, the serotonin system, and BDNF, Int. J. Mol. Sci., 22, 13319, doi: 10.3390/ijms222413319.
  33. Kondaurova, E. M., Belokopytova, I. I., Kulikova, E. A., Khotskin, N. V., Ilchibaeva, T. V., Tsybko, A. S., Popova, N. K., and Naumenko, V. S. (2023) On the role of serotonin 5-HT(1A) receptor in autistic-like behavior: cross talk of 5-HT and BDNF systems, Behav. Brain Res., 438, 114168, doi: 10.1016/j.bbr.2022.114168.
  34. Kulikov, A. V., Naumenko, V. S., Voronova, I. P., Tikhonova, M. A., and Popova, N. K. (2005) Quantitative RT-PCR assay of 5-HT1A and 5-HT2A serotonin receptor MRNAs using genomic DNA as an external standard, J. Neurosci. Methods, 141, 97-101, doi: 10.1016/J.JNEUMETH.2004.06.005.
  35. Naumenko, V. S., and Kulikov, A. V. (2006) Quantitative assay of 5-HT1A receptor gene expression in the brain, Mol. Biol., 40, 30-36, doi: 10.1134/S0026893306010067/METRICS.
  36. Naumenko, V. S., Osipova, D. V., Kostina, E. V., and Kulikov, A. V. (2008) Utilization of a two-standard system in real-time PCR for quantification of gene expression in the brain, J. Neurosci. Methods, 170, 197-203, doi: 10.1016/j.jneumeth.2008.01.008.
  37. Kulikov, A. V., Tikhonova, M. A., and Kulikov, V. A. (2008) Automated measurement of spatial preference in the open field test with transmitted lighting, J. Neurosci. Methods, 170, 345-351, doi: 10.1016/j.jneumeth.2008.01.024.
  38. Khotskin, N. V., Plyusnina, A. V., Kulikova, E. A., Bazhenova, E. Y., Fursenko, D. V., Sorokin, I. E., Kolotygin, I., Mormedec, P., Tereninac, E. E., Sheveleva, O. B., and Kulikov, A. V. (2019) On association of the lethal yellow (AY) mutation in the agouti gene with the alterations in mouse brain and behavior, Behav. Brain Res., 359, 446-456, doi: 10.1016/j.bbr.2018.11.013.
  39. Kulikov, A. V., Morozova, M. V., Kulikov, V. A., Kirichuk, V. S., and Popova, N. K. (2010) Automated analysis of antidepressants' effect in the forced swim test, J. Neurosci. Methods, 191, 26-31, doi: 10.1016/j.jneumeth.2010.06.002.
  40. Hetz, C., and Saxena, S. (2017) ER stress and the unfolded protein response in neurodegeneration, Nat. Rev. Neurol., 13, 477-491, doi: 10.1038/nrneurol.2017.99.
  41. Henderson, Y. O., Smith, G. P., and Parent, M. B. (2013) Hippocampal neurons inhibit meal onset, Hippocampus, 23, 100-107, doi: 10.1002/hipo.22062.
  42. Hannapel, R., Ramesh, J., Ross, A., Lalumiere, R. T., Roseberry, A. G., and Parent, M. B. (2019) Postmeal optogenetic inhibition of dorsal or ventral hippocampal pyramidal neurons increases future intake, eNeuro, 6, 457-475, doi: 10.1523/ENEURO.0457-18.2018.
  43. Dubrovina, N. I., Zinov'ev, D. R., Zinov'eva, D. V., and Kulikov, A. V. (2009) Learning and extinction of a passive avoidance response in mice with high levels of predisposition to catalepsy, Neurosci. Behav. Physiol., 39, 475-480, doi: 10.1007/s11055-009-9152-4.
  44. Sinovyev, D. R., Dubrovina, N. I., and Kulikov, A. V. (2009) Development of amnesia in different mouse strains, Bull. Exp. Biol. Med., 147, 557-559, doi: 10.1007/S10517-009-0583-2.
  45. Lohoff, F. W., Bloch, P. J., Ferraro, T. N., Berrettini, W. H., Pettinati, H. M., Dackis, C. A., O'Brien, C. P., Kampman, K. M., and Oslin, D. W. (2009) Association analysis between polymorphisms in the conserved dopamine neurotrophic factor (CDNF) gene and cocaine dependence, Neurosci. Lett., 453, 199-203, doi: 10.1016/j.neulet.2009.02.026.
  46. Choi, J. M., Hong, J. H., Chae, M. J., Hung, N. P., Kang, H. S., Ma, H.-I., and Kim, Y. J. (2011) Analysis of mutations and the association between polymorphisms in the cerebral dopamine neurotrophic factor (CDNF) gene and Parkinson's disease, Neurosci. Lett., 493, 97-101, doi: 10.1016/j.neulet.2011.02.013.
  47. Yang, Y., Yu, H., Li, W., Liu, B., Zhang, H., Ding, S., Lu, Y., Jiang, T., and Lv, L. (2018) Association between cerebral dopamine neurotrophic factor (CDNF) 2 polymorphisms and schizophrenia susceptibility and symptoms in the han chinese population, Behav. Brain Funct., 14, 1, doi: 10.1186/s12993-017-0133-4.
  48. Arancibia, D., Zamorano, P., and Andrés, M. E. (2018) CDNF Induces the adaptive unfolded protein response and attenuates endoplasmic reticulum stress-induced cell death, Biochim. Biophys. Acta Mol. Cell Res., 1865, 1579-1589, doi: 10.1016/j.bbamcr.2018.08.012.
  49. Martínez, G., Vidal, R. L., Mardones, P., Serrano, F. G., Ardiles, A. O., Wirth, C., Valdés, P., Thielen, P., Schneider, B. L., Kerr, B., Valdés, J. L., Palacios, A. G., Inestrosa, N. C., Glimcher, L. H., and Hetz, C. (2016) Regulation of memory formation by the transcription factor XBP1, Cell Rep., 14, 1382-1394, doi: 10.1016/j.celrep.2016.01.028.
  50. Cissé, M., Duplan, E., Lorivel, T., Dunys, J., Bauer, C., Meckler, X., Gerakis, Y., Lauritzen, I., and Checler, F. (2017) The transcription factor XBP1s restores hippocampal synaptic plasticity and memory by control of the kalirin-7 pathway in Alzheimer model, Mol. Psychiatry, 22, 1562-1575, doi: 10.1038/mp.2016.152.
  51. Zhang, G., and Stackman, R. W. (2015) The role of serotonin 5-HT2A receptors in memory and cognition, Front. Pharmacol., 6, 225, doi: 10.3389/fphar.2015.00225.
  52. Rambousek, L., Palenicek, T., Vales, K., and Stuchlik, A. (2014) The effect of psilocin on memory acquisition, retrieval, and consolidation in the rat, Front. Behav. Neurosci., 8, 1-7, 180, doi: 10.3389/fnbeh.2014.00180.
  53. Lindholm, P., and Saarma, M. (2022) Cerebral dopamine neurotrophic factor protects and repairs dopamine neurons by novel mechanism, Mol. Psychiatry, 27, 1310-1321, doi: 10.1038/s41380-021-01394-6.

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies