Histone methyltransferases as a new target for the epigenetic action by vorinostat

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Aberrant methylation and acetylation of histones are characteristic changes in the system of epigenetic regulation of gene expression accompanying the process of malignant transformation of the cell. Vorinostat is the epigenetic modulator that actively used in clinical oncology practice. The antitumor activity of vorinostat is considered to be associated with only with the inhibition of histone deacetylases. The effects of this drug on histone methylation have not been sufficiently studied. Using the HeLa TI test system, which allows evaluating the integral effect of epigenetically active compounds by activating the expression of the reporter gene GFP, and knockdown of genes by small interfering RNAs, we showed that the inhibitory effect of vorinostat is directed not only at HDAC1, but also at EZH2, SUV39H1, SUV39H2, SUV420H1. Using Western blotting, the ability of vorinostat to suppress the expression of enzymes EZH2, SUV39H1/2, SUV420H1 was confirmed and, in addition, its ability to inhibit the expression of enzymes SUV420H2 and DOT1L was revealed. The data obtained expand the understanding of the epigenetic effects of vorinostat and demonstrate the need for a large-scale analysis of its activity in relation to other epigenetic enzymes. A detailed understanding of the mechanism of epigenetic action of vorinostat will contribute to its more adequate use in the treatment of tumors with an aberrant epigenetic profile.

About the authors

V. P Maksimova

National Medical Research Center of Oncology named after N. N. Blokhin

115478 Moscow, Russia

J. V Makus

National Medical Research Center of Oncology named after N. N. Blokhin;Peoples’ Friendship University of Russia

115478 Moscow, Russia;117198 Moscow, Russia

V. G Popova

National Medical Research Center of Oncology named after N. N. Blokhin;Russian University of Chemical Technology named after D. I. Mendeleev

115478 Moscow, Russia;125047 Moscow, Russia

A. Yu Prus

National Medical Research Center of Oncology named after N. N. Blokhin;MIREA - Russian Technological University

115478 Moscow, Russia;119571 Moscow, Russia

O. G Usalka

National Medical Research Center of Oncology named after N. N. Blokhin;I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)

115478 Moscow, Russia;119991 Moscow, Russia

E. S Trapeznikova

I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)

119991 Moscow, Russia

E. M Zhidkova

National Medical Research Center of Oncology named after N. N. Blokhin

115478 Moscow, Russia

G. A Belitsky

National Medical Research Center of Oncology named after N. N. Blokhin

115478 Moscow, Russia

M. G Yakubovskaya

National Medical Research Center of Oncology named after N. N. Blokhin

115478 Moscow, Russia

References

  1. Tian, X., Zhang, S., Liu, H. M., Zhang, Y. B., Blair, C. A., Mercola, D., Sassone-Corsi, P., and Zi, X. (2013) Histone lysine-specific methyltransferases and demethylases in carcinogenesis: new targets for cancer therapy and prevention, Curr. Cancer Drug Targets, 13, 558-579, doi: 10.2174/1568009611313050007.
  2. Zhao, S., Allis, C. D., and Wang, G. G. (2021) The language of chromatin modification in human cancers, Nat. Rev. Cancer, 21, 413-430, doi: 10.1038/s41568-021-00357-x.
  3. Lam, U. T. F., Tan, B. K. Y., Poh, J. J. X., and Chen, E. S. (2022) Structural and functional specificity of H3K36 methylation, Epigenetics Chromatin, 15, 17, doi: 10.1186/s13072-022-00446-7.
  4. Greer, E. L., and Shi, Y. (2012) Histone methylation: a dynamic mark in health, disease and inheritance, Nat. Rev. Genet., 13, 343-357, doi: 10.1038/nrg3173.
  5. Santos-Rosa, H., Schneider, R., Bannister, A. J., Sherriff, J., Bernstein, B. E., Emre, N. C., Schreiber, S. L., Mellor, J., and Kouzarides, T. (2002) Active genes are tri-methylated at K4 of histone H3, Nature, 419, 407-411, doi: 10.1038/nature01080.
  6. Farooq, Z., Banday, S., Pandita, T. K., and Altaf, M. (2016) The many faces of histone H3K79 methylation, Mutat. Res. Rev. Mutat. Res., 768, 46-52, doi: 10.1016/j.mrrev.2016.03.005.
  7. Cutter DiPiazza, A. R., Taneja, N., Dhakshnamoorthy, J., Wheeler, D., Holla, S., and Grewal, S. I. S. (2021) Spreading and epigenetic inheritance of heterochromatin require a critical density of histone H3 lysine 9 tri-methylation, Proc. Natl. Acad. Sci. USA, 118, e2100699118, doi: 10.1073/pnas.2100699118.
  8. Schotta, G., Lachner, M., Sarma, K., Ebert, A., Sengupta, R., Reuter, G., Reinberg, D., and Jenuwein, T. (2004) A silencing pathway to induce H3-K9 and H4-K20 trimethylation at constitutive heterochromatin, Genes Dev., 18, 1251-1262, doi: 10.1101/gad.300704.
  9. Padeken, J., Methot, S. P., and Gasser, S. M. (2022) Establishment of H3K9-methylated heterochromatin and its functions in tissue differentiation and maintenance, Nat. Rev. Mol. Cell Biol., 23, 623-640, doi: 10.1038/s41580-022-00483-w.
  10. Murakami, Y. (2013) Heterochromatin and Euchromatin, in Encyclopedia of Systems Biology (Dubitzky, W., Wolkenhauer, O., Cho, K.-H., and Yokota, H. eds) Springer New York, New York, NY, pp. 881-884, doi: 10.1007/978-1-4419-9863-7_1413.
  11. Dimitrova, E., Turberfield, A. H., and Klose, R. J. (2015) Histone demethylases in chromatin biology and beyond, EMBO Rep., 16, 1620-1639, doi: 10.15252/embr.201541113.
  12. Taylor-Papadimitriou, J., and Burchell, J. M. (2022) Histone methylases and demethylases regulating antagonistic methyl marks: changes occurring in cancer, Cells, 11, 1113, doi: 10.3390/cells11071113.
  13. Chen, Y., Ren, B., Yang, J., Wang, H., Yang, G., Xu, R., You, L., and Zhao, Y. (2020) The role of histone methylation in the development of digestive cancers: a potential direction for cancer management, Signal. Transduct. Target Ther., 5, 143, doi: 10.1038/s41392-020-00252-1.
  14. Yang, Y., Zhang, M., and Wang, Y. (2022) The roles of histone modifications in tumorigenesis and associated inhibitors in cancer therapy, J. Natl. Cancer Center, 2, 277-290, doi: 10.1016/j.jncc.2022.09.002.
  15. Lee, S. H., Li, Y., Kim, H., Eum, S., Park, K., and Lee, C. H. (2022) The role of EZH1 and EZH2 in development and cancer, BMB Rep., 55, 595-601, doi: 10.5483/BMBRep.2022.55.12.174.
  16. Duan, D., Shang, M., Han, Y., Liu, J., Liu, J., Kong, S. H., Hou, J., Huang, B., Lu, J., and Zhang, Y. (2022) EZH2-CCF-cGAS Axis Promotes Breast Cancer Metastasis, Int. J. Mol. Sci., 23, 1788, doi: 10.3390/ijms23031788.
  17. Entezari, M., Taheriazam, A., Paskeh, M. D. A., Sabouni, E., Zandieh, M. A., Aboutalebi, M., Kakavand, A., Rezaei, S., Hejazi, E. S., Saebfar, H., Salimimoghadam, S., Mirzaei, S., Hashemi, M., and Samarghandian, S. (2023) The pharmacological and biological importance of EZH2 signaling in lung cancer, Biomed. Pharmacother., 160, 114313, doi: 10.1016/j.biopha.2023.114313.
  18. Zakharova, V. V., Magnitov, M. D., Del Maestro, L., Ulianov, S. V., Glentis, A., Uyanik, B., Williart, A., Karpukhina, A., Demidov, O., Joliot, V., Vassetzky, Y. S., Mege, R. M., Piel, M., Razin, S. V., and Ait-Si-Ali, S. (2022) SETDB1 fuels the lung cancer phenotype by modulating epigenome, 3D genome organization and chromatin mechanical properties, Nucleic Acids Res., 50, 4389-4413, doi: 10.1093/nar/gkac234.
  19. Liu, Z., Liu, J., Ebrahimi, B., Pratap, U. P., He, Y., Altwegg, K. A., Tang, W., Li, X., Lai, Z., Chen, Y., Shen, L., Sareddy, G. R., Viswanadhapalli, S., Tekmal, R. R., Rao, M. K., and Vadlamudi, R. K. (2022) SETDB1 interactions with PELP1 contributes to breast cancer endocrine therapy resistance, Breast Cancer Res., 24, 26, doi: 10.1186/s13058-022-01520-4.
  20. Zhang, L., Tian, S., Zhao, M., Yang, T., Quan, S., Song, L., and Yang, X. (2021) SUV39H1-mediated DNMT1 is involved in the epigenetic regulation of Smad3 in cervical cancer, Anticancer Agents Med. Chem., 21, 756-765, doi: 10.2174/1871520620666200721110016.
  21. Saha, N., and Muntean, A. G. (2021) Insight into the multi-faceted role of the SUV family of H3K9 methyltransferases in carcinogenesis and cancer progression, Biochim. Biophys. Acta Rev. Cancer, 1875, 188498, doi: 10.1016/j.bbcan.2020.188498.
  22. Vougiouklakis, T., Sone, K., Saloura, V., Cho, H. S., Suzuki, T., Dohmae, N., Alachkar, H., Nakamura, Y., and Hamamoto, R. (2015) SUV420H1 enhances the phosphorylation and transcription of ERK1 in cancer cells, Oncotarget, 6, 43162-43171, doi: 10.18632/oncotarget.6351.
  23. Moshiri, A., Cheng, H., Kim, S., and Saloura, V. J. (2023) SUV420H1 as a novel target in HPV-negative head and neck squamous cell carcinoma, Cancer Res., 83, 6284, doi: 10.1158/1538-7445.AM2023-6284.
  24. Viotti, M., Wilson, C., McCleland, M., Koeppen, H., Haley, B., Jhunjhunwala, S., Klijn, C., Modrusan, Z., Arnott, D., Classon, M., Stephan, J. P., and Mellman, I. (2018) SUV420H2 is an epigenetic regulator of epithelial/mesenchymal states in pancreatic cancer, J. Cell Biol., 217, 763-777, doi: 10.1083/jcb.201705031.
  25. Nachiyappan, A., Gupta, N., and Taneja, R. (2022) EHMT1/EHMT2 in EMT, cancer stemness and drug resistance: emerging evidence and mechanisms, FEBS J., 289, 1329-1351, doi: 10.1111/febs.16334.
  26. Alexandrova, E., Salvati, A., Pecoraro, G., Lamberti, J., Melone, V., Sellitto, A., Rizzo, F., Giurato, G., Tarallo, R., Nassa, G., and Weisz, A. (2022) Histone methyltransferase DOT1L as a promising epigenetic target for treatment of solid tumors, Front. Genet., 13, 864612, doi: 10.3389/fgene.2022.864612.
  27. Wu, Y., Wang, Z., Han, L., Guo, Z., Yan, B., Guo, L., Zhao, H., Wei, M., Hou, N., Ye, J., Wang, Z., Shi, C., Liu, S., Chen, C., Chen, S., Wang, T., Yi, J., Zhou, J., Yao, L., Zhou, W., et al. (2022) PRMT5 regulates RNA m6A demethylation for doxorubicin sensitivity in breast cancer, Mol. Ther., 30, 2603-2617, doi: 10.1016/j.ymthe.2022.03.003.
  28. Chen, Z., Gan, J., Wei, Z., Zhang, M., Du, Y., Xu, C., and Zhao, H. (2022) The emerging role of PRMT6 in cancer, Front Oncol, 12, 841381, doi: 10.3389/fonc.2022.841381.
  29. Jiang, H., Li, Y., Xiang, X., Tang, Z., Liu, K., Su, Q., Zhang, X., and Li, L. (2021) Chaetocin: A review of its anticancer potentials and mechanisms, Eur. J. Pharmacol., 910, 174459, doi: 10.1016/j.ejphar.2021.174459.
  30. Zhang, S., Guo, J., Zhang, H., Tong, L., and Zhang, L. (2023) Gliotoxin induced ferroptosis by downregulating SUV39H1 expression in esophageal cancer cells, Recent Pat. Anticancer Drug Discov., 18, 397-407, doi: 10.2174/1574892817666220905114120.
  31. Rahman, Z., Bazaz, M. R., Devabattula, G., Khan, M. A., and Godugu, C. (2021) Targeting H3K9 methyltransferase G9a and its related molecule GLP as a potential therapeutic strategy for cancer, J. Biochem. Mol. Toxicol., 35, e22674, doi: 10.1002/jbt.22674.
  32. Lin, H. Y., Wu, H. J., Chen, S. Y., Hou, M. F., Lin, C. S., and Chu, P. Y. (2022) Epigenetic therapy combination of UNC0638 and CI-994 suppresses breast cancer via epigenetic remodeling of BIRC5 and GADD45A, Biomed. Pharmacother., 145, 112431, doi: 10.1016/j.biopha.2021.112431.
  33. Rugo, H. S., Jacobs, I., Sharma, S., Scappaticci, F., Paul, T. A., Jensen-Pergakes, K., and Malouf, G. G. (2020) The promise for histone methyltransferase inhibitors for epigenetic therapy in clinical oncology: a narrative review, Adv. Ther., 37, 3059-3082, doi: 10.1007/s12325-020-01379-x.
  34. Stein, E. M., Garcia-Manero, G., Rizzieri, D. A., Tibes, R., Berdeja, J. G., Savona, M. R., Jongen-Lavrenic, M., Altman, J. K., Thomson, B., Blakemore, S. J., Daigle, S. R., Waters, N. J., Suttle, A. B., Clawson, A., Pollock, R., Krivtsov, A., Armstrong, S. A., DiMartino, J., Hedrick, E., Lowenberg, B., and Tallman, M. S. (2018) The DOT1L inhibitor pinometostat reduces H3K79 methylation and has modest clinical activity in adult acute leukemia, Blood, 131, 2661-2669, doi: 10.1182/blood-2017-12-818948.
  35. Marzochi, L. L., Cuzziol, C. I., Nascimento Filho, C., Dos Santos, J. A., Castanhole-Nunes, M. M. U., Pavarino, E. C., Guerra, E. N. S., and Goloni-Bertollo, E. M. (2023) Use of histone methyltransferase inhibitors in cancer treatment: a systematic review, Eur. J. Pharmacol., 944, 175590, doi: 10.1016/j.ejphar.2023.175590.
  36. Hoy, S. M. (2020) Tazemetostat: first approval, Drugs, 80, 513-521, doi: 10.1007/s40265-020-01288-x.
  37. Richon, V. M. (2006) Cancer biology: mechanism of antitumour action of vorinostat (suberoylanilide hydroxamic acid), a novel histone deacetylase inhibitor, Br. J. Cancer, 95, S2-S6, doi: 10.1038/sj.bjc.6603463.
  38. Siegel, D., Hussein, M., Belani, C., Robert, F., Galanis, E., Richon, V. M., Garcia-Vargas, J., Sanz-Rodriguez, C., and Rizvi, S. (2009) Vorinostat in solid and hematologic malignancies, J. Hematol. Oncol., 2, 31, doi: 10.1186/1756-8722-2-31.
  39. Singh, B. N., Zhang, G., Hwa, Y. L., Li, J., Dowdy, S. C., and Jiang, S. W. (2010) Nonhistone protein acetylation as cancer therapy targets, Expert Rev. Anticancer Ther., 10, 935-954, doi: 10.1586/era.10.62.
  40. Lee, Y. J., Won, A. J., Lee, J., Jung, J. H., Yoon, S., Lee, B. M., and Kim, H. S. (2012) Molecular mechanism of SAHA on regulation of autophagic cell death in tamoxifen-resistant MCF-7 breast cancer cells, Int. J. Med. Sci., 9, 881-893, doi: 10.7150/ijms.5011.
  41. Brown, S., Pawlyn, C., Tillotson, A.-L., Sherratt, D., Flanagan, L., Low, E., Morgan, G. J., Williams, C., Kaiser, M., Davies, F. E., and Jenner, M. W. (2021) Bortezomib, vorinostat, and dexamethasone combination therapy in relapsed myeloma: results of the phase 2 MUK four trial, Clin. Lymphoma Myeloma Leuk., 21, 154-161.e153, doi: 10.1016/j.clml.2020.11.019.
  42. Bilotti, E., Vesole, D. H., McBride, L., Schmidt, L., Gao, Z., Gilani, M., McNeill, A., Bednarz, U., Richter, J., Mato, A., Graef, T., and Siegel, D. S. (2016) Vorinostat in combination with lenalidomide and dexamethasone in lenalidomide-refractory multiple myeloma, Clin. Lymphoma Myeloma Leuk., 16, 558-562, doi: 10.1016/j.clml.2016.08.001.
  43. Wang, Y., Janku, F., Piha-Paul, S., Hess, K., Broaddus, R., Liu, L., Shi, N., Overman, M., Kopetz, S., Subbiah, V., Naing, A., Hong, D., Tsimberidou, A. M., Karp, D., Yao, J., and Fu, S. (2020) Phase I studies of vorinostat with ixazomib or pazopanib imply a role of antiangiogenesis-based therapy for TP53 mutant malignancies, Sci. Rep., 10, 3080, doi: 10.1038/s41598-020-58366-z.
  44. Prebet, T., Braun, T., Beyne-Rauzy, O., Dreyfus, F., Stammatoullas, A., Wattel, E., Ame, S., Raffoux, E., Delaunay, J., Charbonnier, A., Ades, L., Fenaux, P., and Vey, N. (2014) Combination of vorinostat and low dose cytarabine for patients with azacitidine-refractory/relapsed high risk myelodysplastic syndromes, Leuk. Res., 38, 29-33, doi: 10.1016/j.leukres.2013.07.023.
  45. DuBois, S. G., Granger, M. M., Groshen, S., Tsao-Wei, D., Ji, L., Shamirian, A., Czarnecki, S., Goodarzian, F., Berkovich, R., Shimada, H., Villablanca, J. G., Vo, K. T., Pinto, N., Mosse, Y. P., Maris, J. M., Shusterman, S., Cohn, S. L., Goldsmith, K. C., Weiss, B., Yanik, G. A., Twist, C. J., Irwin, M. S., Haas-Kogan, D. A., Park, J. R., Marachelian, A., and Matthay, K. K. (2021) Randomized phase II trial of MIBG versus MIBG, vincristine, and irinotecan versus MIBG and vorinostat for patients with relapsed or refractory neuroblastoma: a report from NANT consortium, J. Clin. Oncol., 39, 3506-3514, doi: 10.1200/JCO.21.00703.
  46. Huang, P. H., Chen, C. H., Chou, C. C., Sargeant, A. M., Kulp, S. K., Teng, C. M., Byrd, J. C., and Chen, C. S. (2011) Histone deacetylase inhibitors stimulate histone H3 lysine 4 methylation in part via transcriptional repression of histone H3 lysine 4 demethylases, Mol. Pharmacol., 79, 197-206, doi: 10.1124/mol.110.067702.
  47. Li, C. T., Hsiao, Y. M., Wu, T. C., Lin, Y. W., Yeh, K. T., and Ko, J. L. (2011) Vorinostat, SAHA, represses telomerase activity via epigenetic regulation of telomerase reverse transcriptase in non-small cell lung cancer cells, J. Cell Biochem., 112, 3044-3053, doi: 10.1002/jcb.23229.
  48. Natarajan, U., Venkatesan, T., and Rathinavelu, A. (2021) Effect of the HDAC inhibitor on histone acetylation and methyltransferases in A2780 ovarian cancer cells, Medicina (Kaunas), 57, 456, doi: 10.3390/medicina57050456.
  49. Nordstrom, L., Andersson, E., Kuci, V., Gustavsson, E., Holm, K., Ringner, M., Guldberg, P., and Ek, S. (2015) DNA methylation and histone modifications regulate SOX11 expression in lymphoid and solid cancer cells, BMC Cancer, 15, 273, doi: 10.1186/s12885-015-1208-y.
  50. Poleshko, A., Einarson, M. B., Shalginskikh, N., Zhang, R., Adams, P. D., Skalka, A. M., and Katz, R. A. (2010) Identification of a functional network of human epigenetic silencing factors, J. Biol. Chem., 285, 422-433, doi: 10.1074/jbc.M109.064667.
  51. Maksimova, V., Shalginskikh, N., Vlasova, O., Usalka, O., Beizer, A., Bugaeva, P., Fedorov, D., Lizogub, O., Lesovaya, E., Katz, R., Belitsky, G., Kirsanov, K., and Yakubovskaya, M. (2021) HeLa TI cell-based assay as a new approach to screen for chemicals able to reactivate the expression of epigenetically silenced genes, PLoS One, 16, e0252504, doi: 10.1371/journal.pone.0252504.
  52. Kruger, N. J. (2009) The Bradford Method For Protein Quantitation, in The Protein Protocols Handbook (Walker, J. M., ed.) Humana Press, Totowa, NJ, pp. 17-24, doi: 10.1007/978-1-59745-198-7_4.
  53. Suzuki, T., Kasuya, Y., Itoh, Y., Ota, Y., Zhan, P., Asamitsu, K., Nakagawa, H., Okamoto, T., and Miyata, N. (2013) Identification of highly selective and potent histone deacetylase 3 inhibitors using click chemistry-based combinatorial fragment assembly, PLoS One, 8, e68669, doi: 10.1371/journal.pone.0068669.
  54. Kurundkar, D., Srivastava, R. K., Chaudhary, S. C., Ballestas, M. E., Kopelovich, L., Elmets, C. A., and Athar, M. (2013) Vorinostat, an HDAC inhibitor attenuates epidermoid squamous cell carcinoma growth by dampening mTOR signaling pathway in a human xenograft murine model, Toxicol. Appl. Pharmacol., 266, 233-244, doi: 10.1016/j.taap.2012.11.002.
  55. Poleshko, A., Kossenkov, A. V., Shalginskikh, N., Pecherskaya, A., Einarson, M. B., Skalka, A. M., and Katz, R. A. (2014) Human factors and pathways essential for mediating epigenetic gene silencing, Epigenetics, 9, 1280-1289, doi: 10.4161/epi.32088.
  56. Xiao, W., Chen, X., Liu, X., Luo, L., Ye, S., and Liu, Y. (2014) Trichostatin A, a histone deacetylase inhibitor, suppresses proliferation and epithelial-mesenchymal transition in retinal pigment epithelium cells, J. Cell. Mol. Med., 18, 646-655, doi: 10.1111/jcmm.12212.
  57. Christman, J. K. (2002) 5-Azacytidine and 5-aza-2′-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy, Oncogene, 21, 5483-5495, doi: 10.1038/sj.onc.1205699.
  58. Jin, M. Z., Xia, B. R., Xu, Y., and Jin, W. L. (2018) Curaxin CBL0137 exerts anticancer activity via diverse mechanisms, Front. Oncol., 8, 598, doi: 10.3389/fonc.2018.00598.
  59. Zhou, D., Park, J. G., Wu, Z., Huang, H., Fiches, G. N., Biswas, A., Li, T. W., Ma, Q., Martinez-Sobrido, L., Santoso, N., and Zhu, J. (2021) FACT subunit SUPT16H associates with BRD4 and contributes to silencing of antiviral interferon signaling, bioRxiv, doi: 10.1101/2021.04.21.440833.
  60. Gabellini, D., and Pedrotti, S. (2022) The SUV4-20H histone methyltransferases in health and disease, Int. J. Mol. Sci., 23, 4736, doi: 10.3390/ijms23094736.
  61. Lachner, M., O'Carroll, D., Rea, S., Mechtler, K., and Jenuwein, T. (2001) Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins, Nature, 410, 116-120, doi: 10.1038/35065132.
  62. Ren, W., Fan, H., Grimm, S. A., Kim, J. J., Li, L., Guo, Y., Petell, C. J., Tan, X.-F., Zhang, Z.-M., Coan, J. P., Yin, J., Kim, D. I., Gao, L., Cai, L., Khudaverdyan, N., Çetin, B., Patel, D. J., Wang, Y., Cui, Q., Strahl, B. D., Gozani, Or, Miller, K. M., O'Leary, S. E., Wade, P. A., Wang, G. G., and Song, J. (2021) DNMT1 reads heterochromatic H4K20me3 to reinforce LINE-1 DNA methylation, Nat. Commun., 12, 2490, doi: 10.1038/s41467-021-22665-4.
  63. Dang-Nguyen, T. Q., Haraguchi, S., Furusawa, T., Somfai, T., Kaneda, M., Watanabe, S., Akagi, S., Kikuchi, K., Tajima, A., and Nagai, T. (2013) Downregulation of histone methyltransferase genes SUV39H1 and SUV39H2 increases telomere length in embryonic stem-like cells and embryonic fibroblasts in pigs, J. Reprod. Dev., 59, 27-32, doi: 10.1262/jrd.2012-118.
  64. Abini-Agbomson, S., Gretarsson, K., Shih, R. M., Hsieh, L., Lou, T., Ioannes, P. D., Vasilyev, N., Lee, R., Wang, M., Simon, M., Armache, J.-P., Nudler, E., Narlikar, G., Liu, S., Lu, C., and Armache, K.-J. (2023) Catalytic and non-catalytic mechanisms of histone H4 lysine 20 methyltransferase SUV420H1, bioRxiv, doi: 10.1101/2023.03.17.533220.
  65. Nicetto, D., and Zaret, K. S. (2019) Role of H3K9me3 heterochromatin in cell identity establishment and maintenance, Curr. Opin. Genet. Dev., 55, 1-10, doi: 10.1016/j.gde.2019.04.013.
  66. Tachibana, M., Matsumura, Y., Fukuda, M., Kimura, H., and Shinkai, Y. (2008) G9a/GLP complexes independently mediate H3K9 and DNA methylation to silence transcription, EMBO J., 27, 2681-2690, doi: 10.1038/emboj.2008.192.
  67. Shah, S., and Henriksen, M. A. (2011) A novel disrupter of telomere silencing 1-like (DOT1L) interaction is required for signal transducer and activator of transcription 1 (STAT1)-activated gene expression, J. Biol. Chem., 286, 41195-41204, doi: 10.1074/jbc.M111.284190.
  68. Song, Y., Wu, F., and Wu, J. (2016) Targeting histone methylation for cancer therapy: enzymes, inhibitors, biological activity and perspectives, J. Hematol. Oncol., 9, 49, doi: 10.1186/s13045-016-0279-9.
  69. Pokholok, D. K., Harbison, C. T., Levine, S., Cole, M., Hannett, N. M., Lee, T. I., Bell, G. W., Walker, K., Rolfe, P. A., Herbolsheimer, E., Zeitlinger, J., Lewitter, F., Gifford, D. K., and Young, R. A. (2005) Genome-wide map of nucleosome acetylation and methylation in yeast, Cell, 122, 517-527, doi: 10.1016/j.cell.2005.06.026.
  70. Shi, B., Behrens, C., Vaghani, V., Riquelme, E. M., Rodriguez-Canales, J., Kadara, H., Lin, H., Lee, J., Liu, H., Wistuba, I., and Simon, G. (2019) Oncogenic enhancer of zeste homolog 2 is an actionable target in patients with non-small cell lung cancer, Cancer Med., 8, 6383-6392, doi: 10.1002/cam4.1855.
  71. Petruccelli, L. A., Dupere-Richer, D., Pettersson, F., Retrouvey, H., Skoulikas, S., and Miller, W. H., Jr. (2011) Vorinostat induces reactive oxygen species and DNA damage in acute myeloid leukemia cells, PLoS One, 6, e20987, doi: 10.1371/journal.pone.0020987.
  72. Attia, S. M., Al-Khalifa, M. K., Al-Hamamah, M. A., Alotaibi, M. R., Attia, M. S. M., Ahmad, S. F., Ansari, M. A., Nadeem, A., and Bakheet, S. A. (2020) Vorinostat is genotoxic and epigenotoxic in the mouse bone marrow cells at the human equivalent doses, Toxicology, 441, 152507, doi: 10.1016/j.tox.2020.152507.

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies