Молекулярный оркестр микробиотических метаболитов в сценарии канцерогенеза

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Механизмы канцерогенеза имеют необычайно сложный характер. Множество игроков обусловливают сценарий злокачественной трансформации клеток, опухолевый рост и метастазирование. В последние десятилетия все больше внимания уделяется роли симбиотической человеку микробиоты в регуляции метаболизма и функционирования иммунной системы организма хозяина. Такой симбиоз макроорганизма и его микроорганизмов объединили в понятие холоорганизма. В процессе коэволюции участников холоорганизма формировались пути их взаимодействия, а метаболиты микробиоты приобрели особую роль - сигнальных молекул и основных регуляторов молекулярных взаимодействий в холоорганизме. Вовлекаясь в сигнальные пути хозяина, бактериальные метаболиты оказались обязательными участниками как физиологических, так и патологических процессов, включая опухолевый рост. При этом эффекты сигнальных метаболитов зачастую имеют разнонаправленный характер, проявляющийся в воздействии как на функции клеток хозяина, так и на метаболическую активность и состав микробиома. В настоящем обзоре рассматривается роль некоторых микробиотических метаболитов в индукции и профилактике процесса злокачественной трансформации клеток в организме хозяина, а также их влияние на эффективность противоопухолевой терапии. Мы постарались обратить внимание читателя на роль некоторых компонентов молекулярного оркестра микробных метаболитов в инициации и прогрессии опухолевого роста.

Об авторах

О. П Шатова

Российский национальный исследовательский медицинский университет им. Н.И. Пирогова;Российский Университет Дружбы Народов

Email: shatova.op@gmail.com
117997 Москва, Россия;117198 Москва, Россия

А. А Заболотнева

Российский национальный исследовательский медицинский университет им. Н.И. Пирогова

117997 Москва, Россия

А. В Шестопалов

Российский национальный исследовательский медицинский университет им. Н.И. Пирогова;Национальный медицинский исследовательский центр Детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева

117997 Москва, Россия;117997 Москва, Россия

Список литературы

  1. Попова О. П., Шегай П. В., Иванов А. А., Данилова Т. И., Алексеев Б. Я., Каприн А. Д. (2008) Молекулярные механизмы развития рака предстательной железы: корреляция уровней EGF, HGF и VEGF с клинико-морфологическими параметрами, Мол. Мед., 4, 40-46.
  2. Zolotovskaia, M. A., Sorokin, M. I., Petrov, I. V., Poddubskaya, E. V., Moiseev, A. A., Sekacheva, M. I., Borisov, N. M., Tkachev, V. S., Garazha, A. V., Kaprin, A. D., Shegay, P. V., Giese, A., Kim, E., Roumiantsev, S. A., and Buzdin, A. A. (2020) Disparity between inter-patient molecular heterogeneity and repertoires of target drugs used for different types of cancer in clinical oncology, Int. J. Mol. Sci., 21, 1580.
  3. Dominguez-Bello, M. G., Godoy-Vitorino, F., Knight, R., and Blaser, M. J. (2019) Role of the microbiome in human development, Gut, 68, 1108-1114, doi: 10.1136/gutjnl-2018-317503.
  4. Agus, A., Clément, K., and Sokol, H. (2021) Gut microbiota-derived metabolites as central regulators in metabolic disorders, Gut, 70, 1174-1182, doi: 10.1136/gutjnl-2020-323071.
  5. Matson, V., Chervin, C. S., and Gajewski, T. F. (2021) Cancer and the microbiome - influence of the commensal microbiota on cancer, immune responses, and immunotherapy, Gastroenterology, 160, 600-613, doi: 10.1053/j.gastro.2020.11.041.
  6. Oh, J. K., and Weiderpass, E. (2014) Infection and cancer: global distribution and burden of diseases, Ann. Glob. Health, 80, 384-392, doi: 10.1016/j.aogh.2014.09.013.
  7. Fang, Y., Yan, C., Zhao, Q., Xu, J., Liu, Z., Gao, J., Zhu, H., Dai, Z., Wang, D., and Tang, D. (2021) The roles of microbial products in the development of colorectal cancer, Bioengineered, 12, 720-735, doi: 10.1080/21655979.2021.
  8. Chagneau, C. V., Payros, D., Tang-Fichaux, M., Auvray, F., Nougayrède, J. P., and Oswald, E. (2022) The pks island: a bacterial Swiss army knife? Colibactin: beyond DNA damage and cancer, Trends Microbiol., 30, 1146-1159, doi: 10.1016/j.tim.2022.05.010.
  9. Dougherty, M. W., and Jobin, C. (2021) Shining a light on colibactin biology, Toxins (Basel), 13, 346, doi: 10.3390/toxins13050346.
  10. Ansari, S., and Yamaoka, Y. (2019) Helicobacter pylori virulence factors exploiting gastric colonization and its pathogenicity, Toxins (Basel), 11, 677, doi: 10.3390/toxins11110677.
  11. Guo, P., Tian, Z., Kong, X., Yang, L., and Shan, X., (2020) FadA promotes DNA damage and progression of Fusobacterium nucleatum-induced colorectal cancer through up-regulation of chk2, J. Exp. Clin. Cancer Res., 39, 202, doi: 10.1186/s13046-020-01677-w.
  12. Tabowei, G., Gaddipati, G. N., Mukhtar, M., Alzubaidee, M. J., Dwarampudi, R. S., Sheena, M., Bichenapally, S., Khachatryan, V., Muazzam, A., Hama, C., Velugoti, L., and Lubna, M. (2022) Microbiota dysbiosis a cause of colorectal cancer or not? Cureus, 14, e30893, doi: 10.7759/cureus.30893.
  13. Tsvetikova, S. A., and Koshel, E. I. (2020) Microbiota and cancer: host cellular mechanisms activated by gut microbial metabolites, Int. J. Med. Microbiol., 310, 151425, doi: 10.1016/j.ijmm.2020.151425.
  14. Visekruna, A., and Luu, M. (2021) The role of short-chain fatty acids and bile acids in intestinal and liver function, inflammation, and carcinogenesis, Front. Cell Dev. Biol., 9, 703218, doi: 10.3389/fcell.2021.703218.
  15. Režen, T., Rozman, D., Kovács, T., Kovács, P., Sipos, A., Bai, P., and Miko, E. (2022) The role of bile acids in carcinogenesis, Cell. Mol. Life Sci., 79, 243, doi: 10.1007/s00018-022-04278-2.
  16. Mikó, E., Kovács, T., Sebő, É., Tóth, J., Csonka, T., Ujlaki, G., Sipos, A., Szabo, J., Mehes, G., and Bai, P. (2019) Microbiome microbial metabolome cancer cell interactions in breast cancer familiar, but unexplored, Cells, 8, 293, doi: 10.3390/cells8040293.
  17. Cai, J., Sun, L., and Gonzalez, F. J. (2022) Gut microbiota-derived bile acids in intestinal immunity, inflammation, and tumorigenesis, Cell Host Microbe, 30, 289-300, doi: 10.1016/j.chom.2022.02.004.
  18. Wells, J. E., and Hylemon, P. B. (2000) Identification and characterization of a bile acid 7α-dehydroxylation operon in Clostridium sp. strain TO-931, a highly active 7α-dehydroxylating strain isolated from human feces, Appl. Environ. Microbiol., 66, 1107-1113, doi: 10.1128/AEM.66.3.1107-1113.2000.
  19. Biagioli, M., Marchianò, S., Carino, A., di Giorgio, C., Santucci, L., Distrutti, E., and Fiorucci, S. (2021) Bile acids activated receptors in inflammatory bowel disease, Cells, 10, 1281, doi: 10.3390/cells10061281.
  20. Cai, X., Young, G. M., and Xie, W. (2021) The xenobiotic receptors PXR and CAR in liver physiology, an update, Biochim. Biophys. Acta Mol. Basis Dis., 1867, 166101, doi: 10.1016/j.bbadis.2021.166101.
  21. Meng, C., Bai, C., Brown, T. D., Hood, L. E., and Tian, Q. (2018) Human gut microbiota and gastrointestinal cancer, Genom. Proteom. Bioinform., 16, 33-49, doi: 10.1016/j.gpb.2017.06.002.
  22. Fiorucci, S., Biagioli, M., Zampella, A., and Distrutti, E. (2018) Bile acids activated receptors regulate innate immunity, Front. Immunol., 9, 1853, doi: 10.3389/fimmu.2018.01853.
  23. Fiorucci, S., Carino, A., Baldoni, M., Santucci, L., Costanzi, E., Graziosi, L., and Biagioli, M. (2021) Bile acid signaling in inflammatory bowel diseases, Dig. Dis. Sci., 66, 674-693, doi: 10.1007/s10620-020-06715-3.
  24. Davis, S. K., Selva, K. J., Kent, S. J., and Chung, A. W. (2020) Serum IgA Fc effector functions in infectious disease and cancer, Immunol. Cell Biol., 98, 276-286, doi: 10.1111/imcb.12306.
  25. Yang, P., Peng, Y., Feng, Y., Xu, Z., Feng, P., Cao, J., Chen, Y., Chen, X., Cao, X., Yang, Y., and Jie, J. (2021) Immune cell-derived extracellular vesicles - new strategies in cancer immunotherapy, Front. Immunol., 12, 771551, doi: 10.3389/fimmu.2021.771551.
  26. Mirlekar, B. (2022) Tumor promoting roles of IL-10, TGF-β, IL-4, and IL-35: Its implications in cancer immunotherapy, SAGE Open Med., 10, 20503121211069012, doi: 10.1177/20503121211069012.
  27. He, B., Liu, Y., Hoang, T. K., Tian, X., Taylor, C. M., Luo, M., Tran, D. Q., Tatevian, N., and Rhoads, J. M. (2019) Antibiotic-modulated microbiome suppresses lethal inflammation and prolongs lifespan in Treg-deficient mice, Microbiome, 7, 145, doi: 10.1186/s40168-019-0751-1.
  28. Hang, S., Paik, D., Yao, L., Kim, E., Trinath, J., Hang, S., Paik, D., Yao, L., Kim, E., Trinath, J., Lu, J., Ha, S., Nelson, B. N., Kelly, S. P., Wu, L., Zheng, Y., Longman, R. S., Rastinejad, F., Devlin, A. S., Krout, M. R., Fischbach, M. A., Littman, D. R., and Huh, J. R. (2019) Author correction: bile acid metabolites control TH17 and Treg cell differentiation, Nature, 576, 143-148, doi: 10.1038/s41586-019-1785-z.
  29. Hertli, S., and Zimmermann, P. (2022) Molecular interactions between the intestinal microbiota and the host, Mol. Microbiol., 117, 1297-1307, doi: 10.1111/mmi.14905.
  30. Ma, C., Han, M., Heinrich, B., Fu, Q., Zhang, Q., Sandhu, M., Agdashian, D., Terabe, M., Berzofsky, J. A., Fako, V., Ritz, T., Longerich, T., Theriot, C. M., McCulloch, J. A., Roy, S., Yuan, W., Thovarai, V., Sen, S. K., Ruchirawat, M., Korangy, F., Wang, X. W., Trinchieri, G., and Greten, T. F. (2018) Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells, Science, 360, eaan5931, doi: 10.1126/science.aan5931.
  31. Liu, X., Chen, B., You, W., Xue, S., and Qin, H. (2018) The membrane bile acid receptor TGR5 drives cell growth and migration via activation of the JAK2/STAT3 signaling pathway in non-small cell lung cancer, Cancer Lett., 412, 194-207, doi: 10.1016/j.canlet.2017.10.017.
  32. Chen, M., Ye, A., Wei, J., Wang, R., and Poon, K. (2020) Deoxycholic acid upregulates the reprogramming factors KFL4 and OCT4 through the IL-6/STAT3 pathway in esophageal adenocarcinoma cells, Technol. Cancer Res. Treat., 19, 194-207, doi: 10.1016/j.canlet.2017.10.017.
  33. Yasuda, H., Hirata, S., Inoue, K., Mashima, H., Ohnishi, H., and Yoshiba, M. (2007) Involvement of membrane-type bile acid receptor M-BAR/TGR5 in bile acid-induced activation of epidermal growth factor receptor and mitogen-activated protein kinases in gastric carcinoma cells, Biochem. Biophys. Res. Commun., 354, 154-159, doi: 10.1016/j.bbrc.2006.12.168.
  34. Huang, W. K., Hsu, H. C., Liu, J. R., Yang, T. S., Chen, J. S., Chang, J. W., Lin, Y. C., Yu, K. H., Kuo, C. F., and See, L. C. (2016) The association of ursodeoxycholic acid use with colorectal cancer risk, Medicine (Baltimore), 95, e2980, doi: 10.1097/MD.0000000000002980.
  35. Heinbockel, L., Weindl, G., Martinez-de-Tejada, G., Correa, W., Sanchez-Gomez, S., Bárcena-Varela, S., Goldmann, T., Garidel, P., Gutsmann, T., and Brandenburg, K. (2018) Inhibition of lipopolysaccharide- and lipoprotein-induced inflammation by antitoxin peptide Pep19-2.5, Front. Immunol., 9, 1704, doi: 10.3389/fimmu.2018.01704.
  36. Sahoo, D. K., Borcherding, D. C., Chandra, L., Jergens, A. E., Atherly, T., Bourgois-Mochel, A., Ellinwood, N. M., Snella, E., Severin, A. J., Martin, M., Allenspach, K., and Mochel, J. P. (2022) Differential transcriptomic profiles following stimulation with lipopolysaccharide in intestinal organoids from dogs with inflammatory bowel disease and intestinal mast cell tumor, Cancers (Basel), 14, 3525, doi: 10.3390/cancers14143525.
  37. Ghosh, S. S., Wang, J., Yannie, P. J., and Ghosh, S. (2020) Intestinal barrier dysfunction, LPS translocation, and disease development, J. Endocr. Soc., 4, bvz039, doi: 10.1210/jendso/bvz039.
  38. Cani, P. D., Amar, J., Iglesias, M. A., Poggi, M., Knauf, C., Bastelica, D., Neyrinck, A. M., Fava, F., Tuohy, K. M., Chabo, C., Waget, A., Delmée, E., Cousin, B., Sulpice, T., Chamontin, B., Ferrières, J., Tanti, J. F., Gibson, G. R., Casteilla, L., Delzenne, N. M., Alessi, M. C., and Burcelin, R. (2007) Metabolic endotoxemia initiates obesity and insulin resistance, Diabetes, 56, 1761-1772, doi: 10.2337/db06-1491.
  39. Nighot, M., Al-Sadi, R., Guo, S., Rawat, M., Nighot, P., Watterson, M., and Ma, T. (2017) Lipopolysaccharide-induced increase in intestinal epithelial tight permeability is mediated by toll-like receptor 4/myeloid differentiation primary response 88 (MyD88) activation of myosin light chain kinase expression, Am. J. Pathol., 187, 2698-2710, doi: 10.1016/j.ajpath.2017.08.005.
  40. Jain, S., Dash, P., Minz, A. P., Satpathi, S., Samal, A. G., Behera, P., Satpathi, P., and Senapati, S. (2019) Lipopolysaccharide (LPS) enhances prostate cancer metastasis potentially through NF-κB activation and recurrent dexamethasone administration fails to suppress it in vivo, Prostate, 79, 168-182, doi: 10.1002/pros.23722.
  41. Zhu, G., Huang, Q., Huang, Y., Zheng, W., Hua, J., Yang, S., Zhuang, Z., Wang, J., and Ye, J. (2016) Lipopolysaccharide increases the release of VEGF-C that enhances cell motility and promotes lymphangiogenesis and lymphatic metastasis through the TLR4-NF-κB/JNK pathways in colorectal cancer, Oncotarget, 7, 73711-73724, doi: 10.18632/oncotarget.12449.
  42. Hand, T. W., Vujkovic-Cvijin, I., Ridaura, V. K., and Belkaid, Y. (2016) Linking the microbiota, chronic disease, and the immune system, Trends Endocrinol. Metab., 27, 831-843, doi: 10.1016/j.tem.2016.08.003.
  43. Zhao, H., Wu, L., Yan, G., Chen, Y., Zhou, M., Wu, Y., and Li, Y. (2021) Inflammation and tumor progression: signaling pathways and targeted intervention, Signal. Transduct. Target Ther., 6, 263, doi: 10.1038/s41392-021-00658-5.
  44. Guo, J., Liao, M., and Wang, J. (2021) TLR4 signaling in the development of colitis-associated cancer and its possible interplay with microRNA-155, Cell Commun. Signal., 19, 90, doi: 10.1186/s12964-021-00771-6.
  45. Venkateswaran, N., and Conacci-Sorrell, M. (2020) Kynurenine: an oncometabolite in colon cancer, Cell Stress, 4, 24-26, doi: 10.15698/cst2020.01.210.
  46. Wyatt, M., and Greathouse, K. L. (2021) Targeting dietary and microbial tryptophan-indole metabolism as therapeutic approaches to colon cancer, Nutrients, 13, 1189, doi: 10.3390/nu13041189.
  47. Martin-Gallausiaux, C., Larraufie, P., Jarry, A., Béguet-Crespel, F., Marinelli, L., Ledue, F., Reimann, F., Blottiere, H., and Lapaque, N. (2018) Butyrate produced by commensal bacteria down-regulates indolamine 2,3-dioxygenase 1 (IDO-1) expression via a dual mechanism in human intestinal epithelial cells, Front. Immunol., 9, 2838, doi: 10.3389/fimmu.2018.02838.
  48. Savitz, J. (2020) The kynurenine pathway: a finger in every pie, Mol. Psychiatry, 25, 131-147, doi: 10.1038/s41380-019-0414-4.
  49. Shestopalov, A. V., Shatova, O. P., Karbyshev, M. S., Gaponov, A. M., Moskaleva, N. E., Appolonova, S. A., Tutelyan, A. V., Makarov, V. V., Yudin, S. M., and Roumiantsev, S. A. (2021) "Kynurenine switch" and obesity, Bull. Sib. Med., 20, 103-111, doi: 10.20538/1682-0363-2021-4-103-111.
  50. Venkateswaran, N., Lafita-Navarro, M. C., Hao, Y. H., Kilgore, J. A., Perez-Castro, L., Braverman, J., Borenstein-Auerbach, N., Kim, M., Lesner, N. P., Mishra, P., Brabletz, T., Shay, J. W., DeBerardinis, R. J., Williams, N. S., Yilmaz, O. H., and Conacci-Sorrell, M. (2019) MYC promotes tryptophan uptake and metabolism by the kynurenine pathway in colon cancer, Genes Dev., 33, 24-26, doi: 10.15698/cst2020.01.210.
  51. Triplett, T. A., Garrison, K. C., Marshall, N., Donkor, M., Blazeck, J., Lamb, C., Qerqez, A., Dekker, J. D., Tanno, Y., Lu, W. C., Karamitros, C. S., Ford, K., Tan, B., Zhang, X. M., McGovern, K., Coma, S., Kumada, Y., Yamany, M. S., Sentandreu, E., Fromm, G., Tiziani, S., Schreiber, T. H., Manfredi, M., Ehrlich, L. I., Stone, E., and Georgiou, G. (2018) Reversal of indoleamine 2,3-dioxygenase-mediated cancer immune suppression by systemic kynurenine depletion with a therapeutic enzyme, Nat. Biotechnol., 36, 758-764, doi: 10.1038/nbt.4180.
  52. Hendrikx, T., and Schnabl, B. (2019) Indoles: metabolites produced by intestinal bacteria capable of controlling liver disease manifestation, J. Intern. Med., 286, 32-40, doi: 10.1111/joim.12892.
  53. Chew, S. S., Tan, L. T., Law, J. W., Pusparajah, P., Goh, B. H., Ab Mutalib, N. S., and Lee, L. H. (2020) Targeting gut microbial biofilms - a key to hinder colon carcinogenesis? Cancers (Basel), 12, 2272, doi: 10.3390/cancers12082272.
  54. Alexeev, E. E., Lanis, J. M., Kao, D. J., Campbell, E. L., Kelly, C. J., Battista, K. D., Gerich, M. E., Jenkins, B. R., Walk, S. T., Kominsky, D. J., and Colgan, S. P. (2018) Microbiota-derived indole metabolites promote human and murine intestinal homeostasis through regulation of interleukin-10 receptor, Am. J. Pathol., 188, 1183-1194, doi: 10.1016/j.ajpath.2018.01.011.
  55. Busbee, P. B., Menzel, L., Alrafas, H. R., Dopkins, N., Becker, W., Miranda, K., Tang, C., Chatterjee, S., Singh, U., Nagarkatti, M., and Nagarkatti, P. S. (2020) Indole-3-carbinol prevents colitis and associated microbial dysbiosis in an IL-22-dependent manner, JCI Insight, 5, e127551, doi: 10.1172/jci.insight.127551.
  56. Sugimura, N., Li, Q., Chu, E. S., Lau, H. C., Fong, W., Liu, W., Liang, C., Nakatsu, G., Su, A. C., Coker, O. O., Wu, W. K., Chan, F. K., and Yu, J. (2022) Lactobacillus gallinarum modulates the gut microbiota and produces anti-cancer metabolites to protect against colorectal tumourigenesis, Gut, 71, 2011-2021, doi: 10.1136/gutjnl-2020-323951.
  57. Zhang, X., Coker, O. O., Chu, E. S., Fu, K., Lau, H. C., Wang, Y. X., Chan, A. W., Wei, H., Yang, X., Sung, J. J., and Yu, J. (2021) Dietary cholesterol drives fatty liver-associated liver cancer by modulating gut microbiota and metabolites, Gut, 70, 761-774, doi: 10.1136/gutjnl-2019-319664.
  58. Mirzaei, R., Afaghi, A., Babakhani, S., Sohrabi, M. R., Hosseini-Fard, S. R., Babolhavaeji, K., Khani, A. A., Yousefimashouf, R., and Karampoor, S. (2021) Role of microbiota-derived short-chain fatty acids in cancer development and prevention, Biomed. Pharmacother., 139, 111619, doi: 10.1016/j.biopha.2021.111619.
  59. Yusuf, F., Adewiah, S., Syam, A. F., and Fatchiyah, F. (2019) Altered profile of gut microbiota and the level short chain fatty acids in colorectal cancer patients, J. Physics Conf. Ser., 1146, 012037, doi: 10.1088/1742-6596/1146/1/012037.
  60. Yang, Q., Ouyang, J., Sun, F., and Yang, J. (2020) Short-chain fatty acids: a soldier fighting against inflammation and protecting from tumorigenesis in people with diabetes, Front. Immunol., 11, 590685, doi: 10.3389/fimmu.2020.590685.
  61. Sivaprakasam, S., Bhutia, Y. D., Yang, S., and Ganapathy, V. (2018) Short-chain fatty acid transporters: role in colonic homeostasis, Compr. Physiol., 8, 299-314, doi: 10.1002/cphy.c170014.
  62. Donohoe, D. R., Holley, D., Collins, L. B., Montgomery, S. A., Whitmore, A. C., Hillhouse, A., Curry, K. P., Renner, S. W., Greenwalt, A., Ryan, E. P., Godfrey, V., Heise, M. T., Threadgill, D. S., Han, A., Swenberg, J. A., Threadgill, D. W., and Bultman, S. J. (2014) A gnotobiotic mouse model demonstrates that dietary fiber protects against colorectal tumorigenesis in a microbiota- and butyrate-dependent manner, Cancer Discov., 4, 1387-1397, doi: 10.1158/2159-8290.CD-14-0501.
  63. Belcheva, A., Irrazabal, T., Robertson, S. J., Streutker, C., Maughan, H., Rubino, S., Moriyama, E. H., Copeland, J. K., Surendra, A., Kumar, S., Green, B., Geddes, K., Pezo, R. C., Navarre, W. W., Milosevic, M., Wilson, B. C., Girardin, S. E., Wolever, T. M., Edelmann, W., Guttman, D. S., Philpott, D. J., and Martin, A. (2014) Gut microbial metabolism drives transformation of msh2-deficient colon epithelial cells, Cell, 158, 288-299, doi: 10.1016/j.cell.2014.04.051.
  64. Feng, W., Wu, Y., Chen, G., Fu, S., Li, B., Huang, B., Wang, D., Wang, W., and Liu, J. (2018) Sodium butyrate attenuates diarrhea in weaned piglets and promotes tight junction protein expression in colon in a GPR109A-dependent manner, Cell. Physiol. Biochem., 47, 1617-1629, doi: 10.1159/000490981.
  65. Li, H. B., Xu, M. L., Xu, X. D., Tang, Y. Y., Jiang, H. L., Li, L., Xia, W. J., Cui, N., Bai, J., Dai, Z. M., Han, B., Li, Y., Peng, B., Dong, Y. Y., Aryal, S., Manandhar, I., Eladawi, M. A., Shukla, R., Kang, Y. M., Joe, B., and Yang, T. (2022) Faecalibacterium prausnitzii attenuates CKD via butyrate-renal GPR43 axis, Circ Res., 131, e120-e134, doi: 10.1161/CIRCRESAHA.122.320184.
  66. Singh, N., Gurav, A., Sivaprakasam, S., Brady, E., Padia, R., Shi, H., Thangaraju, M., Prasad, P. D., Manicassamy, S., Munn, D. H., Lee, J. R., Offermanns, S., and Ganapathy, V. (2014) Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis, Immunity, 40, 128-139, doi: 10.1016/j.immuni.2013.12.007.
  67. Pudlo, N. A., Urs, K., Kumar, S. S., German, J. B., Mills, D. A., and Martens, E. C. (2015) Symbiotic human gut bacteria with variable metabolic priorities for host mucosal glycans, mBio, 6, e01282-15, doi: 10.1128/mBio.01282-15.
  68. Pant, K., Saraya, A., and Venugopal, S. K. (2017) Oxidative stress plays a key role in butyrate-mediated autophagy via Akt/mTOR pathway in hepatoma cells, Chem. Biol. Interact., 273, 99-106, doi: 10.1016/j.cbi.2017.06.001.
  69. Singh, S., Singh, P. K., and Kumar, A. (2022) Butyrate ameliorates intraocular bacterial infection by promoting autophagy and attenuating the inflammatory response, Infect. Immun., 14, e0025222, doi: 10.1128/iai.00252-22.
  70. Tian, Y., Xu, Q., Sun, L., Ye, Y., and Ji, G. (2018) Short-chain fatty acids administration is protective in colitis-associated colorectal cancer development, J. Nutr. Biochem., 57, 103-109, doi: 10.1016/j.jnutbio.2018.03.007.
  71. Iida, N., Dzutsev, A., Stewart, C. A., Smith, L., Bouladoux, N., Weingarten, R. A., Molina, D. A., Salcedo, R., Back, T., Cramer, S., Dai, R.M., Kiu, H., Cardone, M., Naik, S., Patri, A. K., Wang, E., Marincola, F. M., Frank, K. M., Belkaid, Y., Trinchieri, G., and Goldszmid, R. S. (2013) Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment, Science, 342, 967-970, doi: 10.1126/science.1240527.
  72. Daillère, R., Vétizou, M., Waldschmitt, N., Yamazaki, T., Isnard, C., Poirier-Colame, V., Duong, C. P. M., Flament, C., Lepage, P., Roberti, M. P., Routy, B., Jacquelot, N., Apetoh, L., Becharef, S., Rusakiewicz, S., Langella, P., Sokol, H., Kroemer, G., Enot, D., Roux, A., Eggermont, A., Tartour, E., Johannes, L., Woerther, P. L., Chachaty, E., Soria, J. C., Golden, E., Formenti, S., Plebanski, M., Madondo, M., Rosenstiel, P., Raoult, D., Cattoir, V., Boneca, I. G., Chamaillard, M., and Zitvogel, L. (2016) Enterococcus hirae and Barnesiella intestinihominis facilitate cyclophosphamide-induced therapeutic immunomodulatory effects, Immunity, 45, 931-943, doi: 10.1016/j.immuni.2016.09.009.
  73. Viaud, S., Saccheri, F., Mignot, G., Yamazaki, T., Daillère, R., Hannani, D., Enot, D. P., Pfirschke, C., Engblom, C., Pittet, M. J., Schlitzer, A., Ginhoux, F., Apetoh, L., Chachaty, E., Woerther, P. L., Eberl, G., Bérard, M., Ecobichon, C., Clermont, D., Bizet, C., Gaboriau-Routhiau, V., Cerf-Bensussan, N., Opolon, P., Yessaad, N., Vivier, E., Ryffel, B., Elson, C. O., Doré, J., Kroemer, G., Lepage, P., Boneca, I. G., Ghiringhelli, F., and Zitvogel, L. (2013) The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide, Science, 342, 971-976, doi: 10.1126/science.1240537.
  74. Bagchi, S., Yuan, R., and Engleman, E. G. (2021) Immune checkpoint inhibitors for the treatment of cancer: clinical impact and mechanisms of response and resistance, Annu. Rev. Pathol. Mech. Disease, 16, 223-249, doi: 10.1146/annurev-pathol-042020-042741.
  75. Lichtenstern, C. R., Ngu, R. K., Shalapour, S., and Karin, M. (2020) Immunotherapy, inflammation and colorectal cancer, Cells, 9, 1310, doi: 10.3390/ijms18061310.
  76. Sivan, A., Corrales, L., Hubert, N., Williams, J. B., Aquino-Michaels, K., Earley, Z. M., Benyamin, F. W., Lei, Y. M., Jabri, B., Alegre, M. L., Chang, E. B., and Gajewski, T. F. (2015) Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy, Science, 350, 1084-1089, doi: 10.1126/science.aac4255.
  77. Vétizou, M., Pitt, J. M., Daillère, R., Lepage, P., Waldschmitt, N., Flament, C., Rusakiewicz, S., Routy, B., Roberti, M. P., Duong, C. P., Poirier-Colame, V., Roux, A., Becharef, S., Formenti, S., Golden, E., Cording, S., Eberl, G., Schlitzer, A., Ginhoux, F., Mani, S., Yamazaki, T., Jacquelot, N., Enot, D. P., Bérard, M., Nigou, J., Opolon, P., Eggermont, A., Woerther, P. L., Chachaty, E., Chaput, N., Robert, C., Mateus, C., Kroemer, G., Raoult, D., Boneca, I. G., Carbonnel, F., Chamaillard, M., and Zitvogel, L. (2015) Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota, Science, 350, 1079-1084, doi: 10.1126/science.aad1329.
  78. Gopalakrishnan, V., Helmink, B. A., Spencer, C. N., Reuben, A., and Wargo, J. A. (2018) The influence of the gut microbiome on cancer, immunity, and cancer immunotherapy, Cancer Cell, 33, 570-580, doi: 10.1016/j.ccell.2018.03.015.
  79. Hayase, E., and Jenq, R. R. (2021) Role of the intestinal microbiome and microbial-derived metabolites in immune checkpoint blockade immunotherapy of cancer, Genome Med., 13, 107, doi: 10.1186/s13073-021-00923-w.
  80. Coutzac, C., Jouniaux, J. M., Paci, A., Schmidt, J., Mallardo, D., Seck, A., Asvatourian, V., Cassard, L., Saulnier, P., Lacroix, L., Woerther, P. L., Vozy, A., Naigeon, M., Nebot-Bral, L., Desbois, M., Simeone, E., Mateus, C., Boselli, L., Grivel, J., Soularue, E., Lepage, P., Carbonnel, F., Ascierto, P. A., Robert, C., and Chaput, N. (2020) Systemic short chain fatty acids limit antitumor effect of CTLA-4 blockade in hosts with cancer, Nat. Commun., 11, 2168, doi: 10.1038/s41467-020-16079-x.
  81. Routy, B., le Chatelier, E., Derosa, L., Duong, C. P., Alou, M. T., Daillère, R., Fluckiger, A., Messaoudene, M., Rauber, C., Roberti, M. P., Fidelle, M., Flament, C., Poirier-Colame, V., Opolon, P., Klein, C., Iribarren, K., Mondragón, L., Jacquelot, N., Qu, B., Ferrere, G., Clémenson, C., Mezquita, L., Masip, J. R., Naltet, C., Brosseau, S., Kaderbhai, C., Richard, C., Rizvi, H., Levenez, F., Galleron, N., Quinquis, B., Pons, N., Ryffel, B., Minard-Colin, V., Gonin, P., Soria, J. C., Deutsch, E., Loriot, Y., Ghiringhelli, F., Zalcman, G., Goldwasser, F., Escudier, B., Hellmann, M. D., Eggermont, A., Raoult, D., Albiges, L., Kroemer, G., and Zitvogel, L. (2018) Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors, Science, 359, 91-97, doi: 10.1126/science.aan3706.
  82. Gedye, C., van der Westhuizen, A., and John, T. (2015) Checkpoint immunotherapy for cancer: superior survival, unaccustomed toxicities, Intern. Med. J., 45, 696-701, doi: 10.1111/imj.12653.
  83. Sadrekarimi, H., Gardanova, Z. R., Bakhshesh, M., Ebrahimzadeh, F., Yaseri, A. F., Thangavelu, L., Hasanpoor, Z., Zadeh, F. A., and Kahrizi, M. S. (2022) Emerging role of human microbiome in cancer development and response to therapy: special focus on intestinal microflora, J. Transl. Med., 20, 301, doi: 10.1186/s12967-022-03492-7.
  84. Waclawiková, B., and el Aidy, S. (2018) Role of microbiota and tryptophan metabolites in the remote effect of intestinal inflammation on brain and depression, Pharmaceuticals, 11, 63, doi: 10.3390/ph11030063.
  85. Nastasi, C., Candela, M., Bonefeld, C. M., Geisler, C., Hansen, M., Krejsgaard, T., Biagi, E., Andersen, M. H., Brigidi, P., Odum, N., Litman, T., and Woetmann, A. (2015) The effect of short-chain fatty acids on human monocyte-derived dendritic cells, Sci. Rep., 5, 16148, doi: 10.1038/srep16148.
  86. Oppmann, B., Lesley, R., Blom, B., Timans, J. C., Xu, Y., Hunte, B., Vega, F., Yu, N., Wang, J., Singh, K., Zonin, F., Vaisberg, E., Churakova, T., Liu, M., Gorman, D., Wagner, J., Zurawski, S., Liu, Y., Abrams, J. S., Moore, K. W., Rennick, D., de Waal-Malefyt, R., Hannum, C., Bazan, J. F., and Kastelein, R. A. (2000) Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12, Immunity, 13, 715-725, doi: 10.1016/s1074-7613(00)00070-4.
  87. Jafari, B., Ospanov, M., Ejaz, S. A., Yelibayeva, N., Khan, S. U., Amjad, S. T., Safarov, S., Abilov, Z. A., Turmukhanova, M. Z., Kalugin, S. N., Ehlers, P., Lecka, J., Sévigny, J., Iqbal, J., and Langer, P. (2018) 2-Substituted 7-trifluoromethyl-thiadiazolopyrimidones as alkaline phosphatase inhibitors. Synthesis, structure activity relationship and molecular docking study, Eur. J. Med. Chem., 144, 116-127, doi: 10.1016/j.ejmech.2017.11.068.
  88. Xu, H., Liu, L., Xu, F., Liu, M., Song, Y., Chen, J., Zhan, H., Zhang, Y., Xu, D., Chen, Y., Lu, M., and Chen, D. (2022) Microbiome-metabolome analysis reveals cervical lesion alterations, Acta Biochim. Biophys. Sin. (Shanghai), 54, 1552-1560, doi: 10.3724/abbs.2022149.
  89. Eslami, M., Sadrifar, S., Karbalaei, M., Keikha, M., Kobyliak, N. M., Yousefi, B. (2020) Importance of the microbiota inhibitory mechanism on the Warburg effect in colorectal cancer cells, J. Gastrointest. Cancer, 51, 738-747, doi: 10.1007/s12029-019-00329-3.
  90. Hanahan, D. (2022) Hallmarks of cancer: new dimensions, Cancer Discov., 12, 31-46, doi: 10.1158/2159-8290.CD-21-1059.
  91. Zhang, J., Wu, K., Shi, C., and Li, G. (2022) Cancer immunotherapy: fecal microbiota transplantation brings light, Curr. Treat. Options Oncol., 23, 1777-1792, doi: 10.1007/s11864-022-01027-2.

© Российская академия наук, 2023

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах