Metabolism of sphingolipids in tumor cells

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Sphingolipids are a diverse family of complex lipids, in which the determining component is sphingoid base, usually bound to a fatty acid by an amide bond. The metabolism of sphingolipids has long remained on the periphery of biochemical research. Recently, it has begun to attract more and more attention due to the diverse and often multidirectional effects of sphingolipids with a similar chemical structure. Sphingosine and ceramides (N-acylsphingosines), as well as their phosphorylated derivatives (sphingosine-1-phosphate and ceramide-1-phosphates) play the role of signaling molecules. Ceramides can cause apoptosis, regulate the stability of cell membranes and the cellular response to stress. In general, ceramides and sphingoid bases as signaling molecules slow down anabolic and accelerate catabolic reactions, suppressing cell proliferation. Phosphorylated derivatives of ceramide-1-phosphate and sphingosine-1-phosphate, on the contrary, stimulate cell proliferation and division. The significant participation of sphingolipids in the regulation of apoptosis and cell division processes makes them critically important compounds regulating tumor progression. The enzymes of sphingolipid metabolism and the receptors of the corresponding sphingolipids can be considered as targets for antitumor therapy. This review aims to highlight the main pathways of metabolism of sphingolipids in human cells, with special emphasis on the known features of their metabolism in tumor cells.

About the authors

V. S Pokrovsky

Peoples Friendship University of Russia (RUDN University)

Email: pokrovskiy-vs@rudn.ru
117198 Moscow, Russia

V. I Ivanova-radkevich

Peoples Friendship University of Russia (RUDN University)

117198 Moscow, Russia

O. M Kuznetsova

Peoples Friendship University of Russia (RUDN University)

117198 Moscow, Russia

References

  1. Li, R. Z., Wang, X. R., Wang, J., Xie, C., Wang, X. X., Pan, H. D., Meng, W. Y., Liang, T. L., Li, J. X., Yan, P. Y., Wu, Q. B., Liu, L., Yao, X. J., and Leung, E. L. (2022) The key role of Sphingolipid metabolism in cancer: New therapeutic targets, diagnostic and prognostic values, and anti-tumor immunotherapy resistance, Front. Oncol., 27, 941643, doi: 10.3389/fonc.2022.941643.
  2. Lin, M., Li, Y., Wang, S., Cao, B., Li, C., and Li, G. (2022) Sphingolipid metabolism and signaling in lung cancer: a potential therapeutic target, J. Oncol., 28, 9099612, doi: 10.1155/2022/9099612.
  3. Pal, P., Atilla-Gokcumen, G.E., and Frasor, J. (2022) Emerging roles of ceramides in breast cancer biology and therapy, Int. J. Mol. Sci., 23, 11178, doi: 10.3390/ijms231911178.
  4. Pherez-Farah, A., López-Sánchez, R. D. C., Villela-Martínez, L. M., Ortiz-López, R., Beltrán, B. E., and Hernández-Hernández, J. A. (2022) Sphingolipids and lymphomas: a double-edged sword, Cancers (Basel), 14, 2051, doi: 10.3390/cancers14092051.
  5. Byrne, F. L., Olzomer, E. M., Lolies, N., Hoehn, K. L., and Wegner, M. S. (2022) Update on glycosphingolipids abundance in hepatocellular carcinoma, Int. J. Mol. Sci., 23, 4477, doi: 10.3390/ijms23094477.
  6. Zaibaq, F., Dowdy, T., and Larion, M. (2022) Targeting the sphingolipid rheostat in gliomas, Int. J. Mol. Sci., 23, 9255, doi: 10.3390/ijms23169255.
  7. Sukocheva, O. A., Furuya, H., Ng, M. L., Friedemann, M., Menschikowski, M., Tarasov, V. V., Chubarev, V. N., Klochkov, S. G., Neganova, M. E., Mangoni, A. A., Aliev, G., and Bishayee, A. (2020) Sphingosine kinase and sphingosine-1-phosphate receptor signaling pathway in inflammatory gastrointestinal disease and cancers: a novel therapeutic target, Pharmacol. Ther., 207, 107464, doi: 10.1016/j.pharmthera.2019.107464.
  8. Camacho, L., Ouro, A., Gomez-Larrauri, A., Carracedo, A., and Gomez-Muñoz, A. (2022) Implication of ceramide kinase/C1P in cancer development and progression, Cancers (Basel), 14, 227, doi: 10.3390/cancers14010227.
  9. Belleri, M., Chiodelli, P., Corli, M., Capra, M., and Presta, M. (2022) Oncosuppressive and oncogenic activity of the sphingolipid-metabolizing enzyme β-galactosylceramidase, Biochim. Biophys. Acta Rev. Cancer, 1877, 188675, doi: 10.1016/j.bbcan.2021.188675.
  10. Ogretmen, B. (2017) Sphingolipid metabolism in cancer signalling and therapy, Nat. Rev. Cancer, 18, 33-50, doi: 10.1038/nrc.2017.96.
  11. Zelnik, I. D., Rozman, B., Rosenfeld-Gur, E., Ben-Dor, S., and Futerman, A. H. (2019) A stroll down the CerS lane, Adv. Exp. Med. Biol., 1159, 49-63, doi: 10.1007/978-3-030-21162-2_4.
  12. Stiban, J., Tidhar, R., and Futerman, A. H. (2010) Ceramide synthases: roles in cell physiology and signaling, Adv. Exp. Med. Biol., 688, 60-71, doi: 10.1007/978-1-4419-6741-1_4.
  13. Stiban, J., Fistere, D., and Colombini, M. (2006) Dihydroceramide hinders ceramide channel formation: implications on apoptosis, Apoptosis, 11, 773-780, doi: 10.1007/s10495-006-5882-8.
  14. Lachkar, F., Ferré, P., Foufelle, F., and Papaioannou, A. (2021) Dihydroceramides: their emerging physiological roles and functions in cancer and metabolic diseases, Am. J. Physiol. Endocrinol. Metab., 320, E122-E130, doi: 10.1152/ajpendo.00330.2020.
  15. Zheng, W., Kollmeyer, J., Symolon, H., Momin, A., Munter, E., Wang, E., Kelly, S., Allegood, J. C., Liu, Y., Peng, Q., Ramaraju, H., Sullards, M. C., Cabot, M., and Merrill, A. H., Jr (2006) Ceramides and other bioactive sphingolipid backbones in health and disease: lipidomic analysis, metabolism and roles in membrane structure, dynamics, signaling and autophagy, Biochim. Biophys. Acta, 1758, 1864-1884, doi: 10.1016/j.bbamem.2006.08.009.
  16. Breen, P., Joseph, N., Thompson, K., Kraveka, J. M., Gudz, T. I., Li, L., Rahmaniyan, M., Bielawski, J., Pierce, J. S., Van Buren, E., Bhatti, G., and Separovic, D. (2013) Dihydroceramide desaturase knockdown impacts sphingolipids and apoptosis after photodamage in human head and neck squamous carcinoma cells, Anticancer Res., 33, 77-84.
  17. Casasampere, M., Ordoñez, Y. F., Pou, A., and Casas, J. (2016) Inhibitors of dihydroceramide desaturase 1: therapeutic agents and pharmacological tools to decipher the role of dihydroceramides in cell biology, Chem. Phys. Lipids, 197, 33-44, doi: 10.1016/j.chemphyslip.2015.07.025.
  18. Guo, W., Zhang, C., Feng, P., Li, M., Wang, X., Xia, Y., Chen, D., and Li, J. (2021) M6A methylation of DEGS2, a key ceramide-synthesizing enzyme, is involved in colorectal cancer progression through ceramide synthesis, Oncogene, 40, 5913-5924, doi: 10.1038/s41388-021-01987-z.
  19. Hernández-Tiedra, S., Fabriàs, G., Dávila, D., Salanueva, Í. J., Casas, J., Montes, L. R., Antón, Z., García-Taboada, E., Salazar-Roa, M., Lorente, M., Nylandsted, J., Armstrong, J., López-Valero, I., McKee, C. S., Serrano-Puebla, A., García-López, R., González-Martínez, J., Abad, J. L., Hanada, K., Boya, P., and Velasco, G. (2016) Dihydroceramide accumulation mediates cytotoxic autophagy of cancer cells via autolysosome destabilization, Autophagy, 12, 2213-2229, doi: 10.1080/15548627.2016.1213927.
  20. Grassme, H., Jekle, A., Riehle, A., Schwarz, H., Berger, J., Sandhoff, K., Kolesnick, R., and Gulbins, E. (2001). CD95 signaling via ceramide-rich membrane rafts, J. Biol. Chem., 276, 20589-20596, doi: 10.1074/jbc.M101207200.
  21. Crivelli, S. M., Giovagnoni, C., Zhu, Z., Tripathi, P., Elsherbini, A., Quadri, Z., Pu, J., Zhang, L., Ferko, B., Berkes, D., Spassieva, S. D., Martinez-Martinez, P., and Bieberich, E. (2022) Function of ceramide transfer protein for biogenesis and sphingolipid composition of extracellular vesicles, J. Extracell. Vesicles, 11, e12233, doi: 10.1002/jev2.12233.
  22. Giussani, P., Colleoni, T., Brioschi, L., Bassi, R., Hanada, K., Tettamanti, G., Riboni, L., and Viani, P. (2008) Ceramide traffic in C6 glioma cells: evidence for CERT-dependent and independent transport from ER to the Golgi apparatus, Biochim. Biophys. Acta, 1781, 40-51, doi: 10.1016/j.bbalip.2007.11.002.
  23. Chen, W., Wu, C., Chen, Y., Guo, Y., Qiu, L., Liu, Z., Sun, H., Chen, S., An, Z., Zhang, Z., Li, Y., and Li, L. (2021) Downregulation of ceramide synthase 1 promotes oral cancer through endoplasmic reticulum stress, Int. J. Oral Sci., 13, 10, doi: 10.1038/s41368-021-00118-4.
  24. Fekry, B., Jeffries, K. A., Esmaeilniakooshkghazi, A., Ogretmen, B., Krupenko, S. A., and Krupenko, N. I. (2016) CerS6 is a novel transcriptional target of p53 protein activated by non-genotoxic stress, J. Biol. Chem., 291, 16586-16596, doi: 10.1074/jbc.M116.716902.
  25. White-Gilbertson, S., Mullen, T., Senkal, C., Lu, P., Ogretmen, B., Obeid, L., and Voelkel-Johnson, C. (2009) Ceramide synthase 6 modulates TRAIL sensitivity and nuclear translocation of active caspase-3 in colon cancer cells, Oncogene, 28, 1132-1141, doi: 10.1038/onc.2008.468.
  26. Jensen, S. A., Calvert, A. E., Volpert, G., Kouri, F. M., Hurley, L. A., Luciano, J. P., Wu, Y., Chalastanis, A., Futerman, A. H., and Stegh, A. H. (2014) Bcl2L13 is a ceramide synthase inhibitor in glioblastoma, Proc. Natl Acad. Sci. USA, 111, 5682-5687, doi: 10.1073/pnas.1316700111.
  27. Chen, H., He, B., and Ke, F. (2022) Ceramide synthase 6 mediates triple-negative breast cancer response to chemotherapy through RhoA- and EGFR-mediated signaling pathways, J. Breast Cancer, 25, 500-512, doi: 10.4048/jbc.2022.25.e47.
  28. Senkal, C. E., Ponnusamy, S., Manevich, Y., Meyers-Needham, M., Saddoughi, S. A., Mukhopadyay, A., Dent, P., Bielawski, J., and Ogretmen, B. (2011) Alteration of ceramide synthase 6/C16-ceramide induces activating transcription factor 6-mediated endoplasmic reticulum (ER) stress and apoptosis via perturbation of cellular Ca2+ and ER/Golgi membrane network, J. Biol. Chem., 286, 42446-42458, doi: 10.1074/jbc.M111.287383.
  29. Schiffmann, S., Sandner, J., Birod, K., Wobst, I., Angioni, C., Ruckhäberle, E., Kaufmann, M., Ackermann, H., Lötsch, J., Schmidt, H., Geisslinger, G., and Grösch, S. (2009). Ceramide synthases and ceramide levels are increased in breast cancer tissue, Carcinogenesis, 30, 745-752, doi: 10.1093/carcin/bgp061.
  30. Karahatay, S., Thomas, K., Koybasi, S., Senkal, C. E., Elojeimy, S., Liu, X., Bielawski, J., Day, T. A., Gillespie, M. B., Sinha, D., Norris, J. S., Hannun, Y. A., and Ogretmen, B. 2007) Clinical relevance of ceramide metabolism in the pathogenesis of human head and neck squamous cell carcinoma (HNSCC): attenuation of C(18)-ceramide in HNSCC tumors correlates with lymphovascular invasion and nodal metastasis, Cancer Lett., 256, 101-111, doi: 10.1016/j.canlet.2007.06.003.
  31. Tallima, H., Azzazy, H. M. E., and El Ridi, R. (2021) Cell surface sphingomyelin: key role in cancer initiation, progression, and immune evasion, Lipids Health Dis., 20, 150, doi: 10.1186/s12944-021-01581-y.
  32. Jing, F., Jing, C., Dai, X., Zhou, G., Di, S., Bi, X., Dai, T., Qin, T., and Hong, L. (2021) Sphingomyelin synthase 2 but not sphingomyelin synthase 1 is upregulated in ovarian cancer and involved in migration, growth, and survival via different mechanisms, Am. J. Transl. Res., 13, 4412-4421.
  33. Zheng, K., Chen, Z., Feng, H., Chen, Y., Zhang, C., Yu, J., Luo, Y., Zhao, L., Jiang, X., and Shi, F. (2019) Sphingomyelin synthase 2 promotes an aggressive breast cancer phenotype by disrupting the homoeostasis of ceramide and sphingomyelin, Cell Death Dis., 10, 157, doi: 10.1038/s41419-019-1303-0.
  34. Dahiya, R., Boyle, B., Goldberg, B. C., Yoon, W. H., Konety, B., Chen, K., Yen, T. S., Blumenfeld, W., and Narayan, P. (1992) Metastasis-associated alterations in phospholipids and fatty acids of human prostatic adenocarcinoma cell lines, Biochem. Cell Biol., 70, 548-554, doi: 10.1139/o92-085.
  35. Li, Z., Hailemariam, T. K., Zhou, H., Li, Y., Duckworth, D. C., Peake, D. A., Zhang, Y., Kuo, M. S., Cao, G., and Jiang, X. C. (2007) Inhibition of sphingomyelin synthase (SMS) affects intracellular sphingomyelin accumulation and plasma membrane lipid organization, Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 1771, 1186-1194, doi: 10.1016/j.bbalip.2007.05.007.
  36. Tafesse, F. G., Huitema, K., Hermansson, M., van der Poel, S., van den Dikkenberg, J., Uphoff, A., Somerharju, P., and Holthuis, J. C. (2007) Both sphingomyelin synthases SMS1 and SMS2 are required for sphingomyelin homeostasis and growth in human HeLa cells, J. Biol. Chem., 282, 17537-17547, doi: 10.1074/jbc.M702423200.
  37. Van der Luit, A. H., Budde, M., Zerp, S., Caan, W., Klarenbeek, J. B., Verheij, M., and Van Blitterswijk, W. J. (2007) Resistance to alkyl-lysophospholipid-induced apoptosis due to downregulated Sphingomyelin synthase 1 expression with consequent Sphingomyelin- and cholesterol-deficiency in lipid rafts, Biochem. J., 401, 541-549, doi: 10.1042/BJ20061178.
  38. Itoh, M., Kitano, T., Watanabe, M., Kondo, T., Yabu, T., Taguchi, Y., Iwai, K., Tashima, M., Uchiyama, T., and Okazaki, T. (2003) Possible role of ceramide as an indicator of chemoresistance: decrease of the ceramide content via activation of glucosylceramide synthase and Sphingomyelin synthase in chemoresistant leukemia, Clin. Cancer Res., 9, 415-423.
  39. Beier, U. H., and Görögh, T. (2005) Implications of galactocerebrosidase and galactosylcerebroside metabolism in cancer cells, Int. J. Cancer, 115, 6-10, doi: 10.1002/ijc.20851.
  40. Reza, S., Ugorski, M., and Suchański, J. (2021) Glucosylceramide and galactosylceramide, small glycosphingolipids with significant impact on health and disease, Glycobiology, 31, 1416-1434, doi: 10.1093/glycob/cwab046.
  41. García-Barros, M., Coant, N., Truman, J. P., Snider, A. J., and Hannun, Y. A. (2014) Sphingolipids in colon cancer, Biochim. Biophys. Acta, 1841, 773-782, doi: 10.1016/j.bbalip.2013.09.007.
  42. Liu, Y. Y., Gupta, V., Patwardhan, G. A., Bhinge, K., Zhao, Y., Bao, J., Mehendale, H., Cabot, M. C., Li, Y. T., and Jazwinski, S. M. (2010) Glucosylceramide synthase upregulates MDR1 expression in the regulation of cancer drug resistance through cSrc and beta-catenin signaling, Mol. Cancer, 9, 145, doi: 10.1186/1476-4598-9-145.
  43. Joshi, P. G., and Mishra, S. (1992) Galactocerebroside mediates Ca2+ signaling in cultured glioma cells, Brain Res., 597, 108-113, doi: 10.1016/0006-8993(92)91511-c.
  44. Покровский В. С. (2023) Биохимия человека. Обмен липидов: учебное пособие, Москва, Е-ното, 496 с.
  45. Lavie, Y., Cao, H., Bursten, S. L., Giuliano, A. E., and Cabot, M. C. (1996) Accumulation of glucosylceramides in multidrug-resistant cancer cells, J. Biol. Chem., 271, 19530-19536, doi: 10.1074/jbc.271.32.19530.
  46. Lucci, A., Cho, W. I., Han, T. Y., Giuliano, A. E., Morton, D. L., and Cabot, M. C. (1998) Glucosylceramide: a marker for multiple-drug resistant cancers, Anticancer Res., 18, 475-480.
  47. Russo, D., Parashuraman, S., and D'Angelo, G. (2016) Glycosphingolipid-protein interaction in signal transduction, Int. J. Mol. Sci., 17, 1732, doi: 10.3390/ijms17101732.
  48. Sasaki, N., Toyoda, M., and Ishiwata, T. (2021) Gangliosides as signaling regulators in cancer, Int. J. Mol. Sci., 22, 5076, doi: 10.3390/ijms22105076.
  49. De Maria, R., Lenti, L., Malisan, F., d'Agostino, F., Tomassini, B., Zeuner, A., Rippo, M. R., and Testi, R. (1997) Requirement for GD3 ganglioside in CD95- and ceramide-induced apoptosis, Science, 277, 1652-1655, doi: 10.1126/science.277.5332.1652.
  50. Veldman, R. J., Klappe, K., Hinrichs, J., Hummel, I., van der Schaaf, G., Sietsma, H., and Kok, J. W. (2002) Altered Sphingolipid metabolism in multidrug-resistant ovarian cancer cells is due to uncoupling of glycolipid biosynthesis in the Golgi apparatus, FASEB J., 16, 1111-1113, doi: 10.1096/fj.01-0863fje.
  51. Xiao, S., Finkielstein, C. V., and Capelluto, D. G. (2013) The enigmatic role of sulfatides: new insights into cellular functions and mechanisms of protein recognition, Adv. Exp. Med. Biol., 991, 27-40, doi: 10.1007/978-94-007-6331-9_3.
  52. Suchański, J., and Ugorski, M. (2016) The biological role of sulfatides, Postepy Hig. Med. Dosw. (Online), 70, 489-504, doi: 10.5604/17322693.1201720.
  53. Su, L., Athamna, M., Wang, Y., Wang, J., Freudenberg, M., Yue, T., Wang, J., Moresco, E. M. Y., He, H., Zor, T., and Beutler, B. (2021) Sulfatides are endogenous ligands for the TLR4-MD-2 complex, Proc. Natl. Acad. Sci. USA, 118, e2105316118, doi: 10.1073/pnas.2105316118.
  54. Takahashi, T., and Suzuki, T. (2012) Role of sulfatide in normal and pathological cells and tissues, J. Lipid Res., 53, 1437-1450, doi: 10.1194/jlr.R026682.
  55. Boath, A., Graf, C., Lidome, E., Ullrich, T., Nussbaumer, P., and Bornancin, F. (2008) Regulation and traffic of ceramide 1-phosphate produced by ceramide kinase: comparative analysis to glucosylceramide and sphingomyelin, J. Biol. Chem., 283, 8517-8526, doi: 10.1074/jbc.M707107200.
  56. Yamaji, T., and Hanada, K. (2014) Sphingolipid metabolism and interorganellar transport: localization of Sphingolipid enzymes and lipid transfer proteins, Traffic, 16, 101-122, doi: 10.1111/tra.12239.
  57. Baumruker, T., Bornancin, F., and Billich, A. (2005) The role of sphingosine and ceramide kinases in inflammatory responses, Immunol. Lett., 96, 175-185, doi: 10.1016/j.imlet.2004.09.001.
  58. Bhadwal, P., Dahiya, D., Shinde, D., Vaiphei, K., Math, R. G. H., Randhawa, V., and Agnihotri, N. (2020) LC-HRMS based approach to identify novel sphingolipid biomarkers in breast cancer patients, Sci. Rep., 10, 4668, doi: 10.1038/s41598-020-61283-w.
  59. Rivera, I. G., Ordoñez, M., Presa, N., Gangoiti, P., Gomez-Larrauri, A., Trueba, M., Fox, T., Kester, M., and Gomez-Muñoz, A. (2016) Ceramide 1-phosphate regulates cell migration and invasion of human pancreatic cancer cells, Biochem. Pharmacol., 102, 107-119, doi: 10.1016/j.bcp.2015.12.009.
  60. Payne, A. W., Pant, D. K., Pan, T.-C., and Chodosh, L. A. (2014) Ceramide kinase promotes tumor cell survival and mammary tumor recurrence, Cancer Res., 74, 6352-6363, doi: 10.1158/0008-5472.CAN-14-1292.
  61. Canals, D., Perry, D. M., Jenkins, R. W., and Hannun, Y. A. (2011) Drug targeting of Sphingolipid metabolism: sphingomyelinases and ceramidases, Br. J. Pharmacol., 163, 694-712, doi: 10.1111/j.1476-5381.2011.01279.x.
  62. Dyatlovitskaya, E. V., and Kandyba, A. G. (2006) Role of biologically active sphingolipids in tumor growth, Biochemistry (Moscow), 71, 10-17, doi: 10.1134/s0006297906010020.
  63. Pulkoski-Gross, M. J., Donaldson, J. C., and Obeid, L. M. (2015) Sphingosine-1-phoSphate metabolism: a structural perspective, Crit. Rev. Biochem. Mol. Biol., 50, 298-313, doi: 10.3109/10409238.2015.1039115.
  64. Takabe, K., and Spiegel, S. (2014) Export of sphingosine-1-phosphate and cancer progression, J. Lipid Res., 55, 1839-1846, doi: 10.1194/jlr.R046656.
  65. Hla, T., and Dannenberg, A. J. (2012) Sphingolipid signaling in metabolic disorders, Cell Metab., 16, 420-434, doi: 10.1016/j.cmet.2012.06.017.
  66. Pyne, N. J., Tonelli, F., Lim, K. G., Long, J. S., Edwards, J., and Pyne, S. (2012) Sphingosine 1-phosphate signalling in cancer, Biochem. Soc. Transact., 40, 94-100, doi: 10.1042/bst20110602.
  67. Sanchez, T., Skoura, A., Wu, M. T., Casserly, B., Harrington, E. O., and Hla, T. (2007) Induction of vascular permeability by the sphingosine-1-PhoSphate receptor-2 (S1p2r) and its downstream effectors ROCK and PTEN, Arterioscler. Thromb. Vasc. Biol., 27, 1312-1318, doi: 10.1161/ATVBAHA.107.143735.
  68. Cuvillier, O., and Levade, T. (2001) Sphingosine 1-phosphate antagonizes apoptosis of human leukemia cells by inhibiting release of cytochrome c and Smac/Diablo from mitochondria, Blood J. Am. Soc. Hematol., 98, 2828-2836, doi: 10.1182/blood.v98.9.2828.
  69. Ponnusamy, S., Selvam, S. P., Mehrotra, S., Kawamori, T., Snider, A. J., Obeid, L. M., Shao, Y., Sabbadini, R., and Ogretmen, B. (2012) Communication between host organism and cancer cells is transduced by systemic sphingosine kinase 1/sphingosine 1-phosphate signalling to regulate tumour metastasis, EMBO Mol. Med., 4, 761-775, doi: 10.1002/emmm.201200244.
  70. Park, K. S., Kim, M. K., Lee, H. Y., Kim, S. D., Lee, S. Y., Kim, J. M., Ryu, S. H., and Bae, Y. S. (2007) S1p stimulates chemotactic migration and invasion in Ovcar3 ovarian cancer cells, Biochem. Biophys. Res. Commun., 356, 239-244, doi: 10.1016/j.bbrc.2007.02.112.
  71. Dyatlovitskaya, E. V., and Kandyba, A. G. (2006) Sphingolipids in tumor metastases and angiogenesis, Biochemistry (Moscow), 71, 347-353, doi: 10.1134/s0006297906040018.
  72. Pitson, S. M. (2011) Regulation of sphingosine kinase and sphingolipid signaling, Trends Biochem Sci., 36, 97-107, doi: 10.1016/j.tibs.2010.08.001.
  73. Dominguez, G., Maddelein, M. L., Pucelle, M., Nicaise, Y., Maurage, C. A., Duyckaerts, C., Cuvillier, O., and Delisle, M. B. (2018) Neuronal sphingosine kinase 2 subcellular localization is altered in Alzheimer's disease brain, Acta Neuropathol. Commun., 6, 25, doi: 10.1186/s40478-018-0527-z.
  74. Chen, H., Haddadi, N., Zhu, X., Hatoum, D., Chen, S., Nassif, N. T., Lin, Y., and McGowan, E. M. (2022) Expression profile of sphingosine kinase 1 isoforms in human cancer tissues and cells: importance and clinical relevance of the neglected 1b-isoform, J. Oncol., 7, 2250407, doi: 10.1155/2022/2250407.
  75. Haddadi, N., Lin, Y., Simpson, A. M., Nassif, N. T. and McGowan, E. M. (2017) "Dicing and Splicing" sphingosine kinase and relevance to cancer, Int. J. Mol. Sci., 18, 1891, doi: 10.3390/ijms18091891.
  76. Diaz Escarcega, R., McCullough, L. D. and Tsvetkov, A. S. (2021) The functional role of sphingosine kinase 2, Front. Mol. Biosci., 8, 683767, doi: 10.3389/fmolb.2021.683767.
  77. Pyne, N. J. and Pyne, S (2010) Sphingosine 1 phosphate and cancer, Nat. Rev. Cancer, 10, 489-503, doi: 10.1038/nrc2875.
  78. Kawamori, T., Kaneshiro, T., Okumura, M., Maalouf, S., Uflacker, A., Bielawski, J., Hannun, Y. A., and Obeid, L. M. (2009) Role for Sphingosine kinase 1 in colon carcinogenesis, FASEB J., 23, 405-414, doi: 10.1096/fj.08-117572.
  79. Peng, J., Chen, B., Shen, Z., Deng, H., Liu, D., Xie, X., Gan, X., Xu, X., Huang, Z., and Chen, J. (2015) DNA promoter hypermethylation 538 contributes to down-regulation of galactocerebrosidase gene 539 in lung and head and neck cancers, Int. J. Clin. Exp. Pathol., 8, 11042-11050.
  80. Zhao, Y., Guo, Y., Wang, Z., Xiao, Z., Li, R., Luo, A., Wu, C., Jing, Z., Sun, N., Chen, X., Du, H., and Zeng, Y. (2015) GALC gene is downregulated by promoter hypermethylation in Epstein-Barr virus-associated nasopharyngeal carcinoma Oncol. Rep., 34, 1369-1378, doi: 10.3892/or.2015.4134.
  81. Görögh, T., Rudert, H., Lippert, B. M., Gottschlich, S., Maune, S., Heidorn, K., Maass, J., Hoffmann, M., Meyer, J. E., Rathcke, I. O., Folz, B. J., Hortobagyi, T., and Werner, J. A. (1999) Transcriptional repression of the human galactocerebrosidase gene in squamous cell carcinomas of the larynx, Int. J. Cancer, 83, 750-754, doi: 10.1002/(sici)1097-0215(19991210)83:6<750::aid-ijc9>3.0.co;2-v.
  82. Sui, G., Affar, elB., Shi, Y., Brignone, C., Wall, N. R., Yin, P., Donohoe, M., Luke, M. P., Calvo, D., Grossman, S. R., and Shi, Y. (2004) Yin Yang 1 (YY1) is a negative regulator of p53, Cell, 117, 859-872, doi: 10.1016/j.cell.2004.06.004.
  83. Yakovleva, T., Kolesnikova, L., Vukojević, V., Gileva, I., Tan-No, K., Austen, M., Lüscher, B., Ekström, T. J., Terenius, L., and Bakalkin, G. (2004) YY1 binding to a subset of p53 DNA-target sites regulates p53-dependent transcription, Biochem. Biophys. Res. Commun., 318, 615-624, doi: 10.1016/j.bbrc.2004.04.065.
  84. Presta, M. (2021) β-Galactosylceramidase in cancer: friend or foe? Trends Cancer, 7, 974-977, doi: 10.1016/j.trecan.2021.08.001.
  85. Belleri, M., Paganini, G., Coltrini, D., Ronca, R., Zizioli, D., Corsini, M., Barbieri, A., Grillo, E., Calza, S., Bresciani, R., Maiorano, E., Mastropasqua, M. G., Annese, T., Giacomini, A., Ribatti, D., Casas, J., Levade, T., Fabrias, G., and Presta, M. (2020) β-Galactosylceramidase promotes melanoma growth via modulation of ceramide metabolism, Cancer Res., 80, 5011-5023, doi: 10.1158/0008-5472.CAN-19-3382.
  86. Barth, B. M., Shanmugavelandy, S. S., Tacelosky, D. M., Kester, M., Morad, S. A., and Cabot, M. C. (2013) Gaucher's disease and cancer: a sphingolipid perspective, Crit. Rev. Oncog., 18, 221-234, doi: 10.1615/critrevoncog.2013005814.
  87. Henry, B., Ziobro, R., Becker, K. A., Kolesnick, R., and Gulbins, E. (2013) Acid sphingomyelinase, Handb. Exp. Pharmacol., 215, 77-88, doi: 10.1007/978-3-7091-1368-4_4.
  88. Hertervig, E., Nilsson, A., Nyberg, L., and Duan, R. D. (1997) Alkaline sphingomyelinase activity is decreased in human colorectal carcinoma, Cancer, 79, 448-453, doi: 10.1002/(sici)1097-0142(19970201)79:3<448::aid-cncr4>3.0.co;2-e.
  89. Demircan, B., Dyer, L. M., Gerace, M., Lobenhofer, E. K., Robertson, K. D., and Brown, K. D. (2009) Comparative epigenomics of human and mouse mammary tumors, Genes Chromosomes Cancer, 48, 83-97, doi: 10.1002/gcc.20620.
  90. Clarke, C. J. (2018) Neutral sphingomyelinases in cancer, Sphingolipids Cancer, 140, 97-119, doi: 10.1016/bs.acr.2018.04.010.
  91. Revill, K., Wang, T., Lachenmayer, A., Kojima, K., Harrington, A., Li, J., Hoshida, Y., Llovet, J. M., and Powers, S. (2013) Powers genome-wide methylation analysis and epigenetic unmasking identify tumor suppressor genes in hepatocellular carcinoma, Gastroenterology, 145, 1424-1435, doi: 10.1053/j.gastro.2013.08.055.
  92. Kim, W. J., Okimoto, R. A., Purton, L. E., Goodwin, M., Haserlat, S. M., Dayyani, F., Sweetser, D. A., McClatchey, A. I., Bernard, O. A., Look, A. T., Bell, D. W., Scadden, D. T., and Haber, D. A. (2008) Mutations in the neutral sphingomyelinase gene SMPD3 implicate the ceramide pathway in human leukemias, Blood, 111, 4716-4722, doi: 10.1182/blood-2007-10-113068.
  93. Marchesini, N., and Hannun, Y. A. (2004) Acid and neutral sphingomyelinases: roles and mechanisms of regulation, Biochem. Cell Biol., 82, 27-44, doi: 10.1139/o03-091.
  94. Megha, and London, E. (2004) Ceramide selectively displaces cholesterol from ordered lipid domains (rafts): implications for lipid raft structure and function, J. Biol. Chem., 279, 9997-10004, doi: 10.1074/jbc.M309992200.
  95. Hannun, Y. A., and Obeid, L. M. (2018) Sphingolipids and their metabolism in physiology and disease, Nat. Rev. Mol. Cell Biol., 19, 175-191, doi: 10.1038/nrm.2017.107.
  96. Jarvis, W. D., Kolesnick, R. N., Fornari, F. A., Traylor, R. S., Gewirtz, D. A., and Grant, S. (1994) Induction of apoptotic DNA damage and cell death by activation of the Sphingomyelin pathway, Proc. Natl. Acad. Sci. USA, 91, 73-77, doi: 10.1073/pnas.91.1.73.
  97. Aslan. M., Afsar, E., Kirimlioglu, E., Ceker, T., and Yilmaz, C. (2021) Antiproliferative effects of thymoquinone in MCF-7 breast and HepG2 liver cancer cells: possible role of ceramide and ER stress, Nutr. Cancer, 73, 460-472, doi: 10.1080/01635581.2020.1751216.
  98. Kilkus, J., Goswami, R., Testai, F. D., and Dawson, G. (2003) Ceramide in rafts (detergent-insoluble fraction) mediates cell death in neurotumor cell lines, J. Neurosci. Res., 72, 65-75, doi: 10.1002/jnr.10549.
  99. Rotolo, J. A., Zhang, J., Donepudi, M., Lee, H., Fuks, Z., and Kolesnick, R. (2005) Caspase-dependent and -independent activation of acid sphingomyelinase signaling, J. Biol. Chem., 280, 26425-26434, doi: 10.1074/jbc.M414569200.
  100. Ferranti, C. S., Cheng, J., Thompson, C., Zhang, J., Rotolo, J. A., Buddaseth, S., Fuks, Z., and Kolesnick, R. N. (2020) Fusion of lysosomes to plasma membrane initiates radiation-induced apoptosis, J. Cell Biol., 219, e201903176, doi: 10.1083/jcb.201903176.
  101. Clarke, C. J., Shamseddine, A. A., Jacob, J. J., Khalife, G., Burns, T. A., and Hannun, Y. A. (2016) ATRA transcriptionally induces nSMase2 through CBP/p300-mediated histone acetylation, J. Lipid Res., 57, 868-881, doi: 10.1194/jlr.m067447.
  102. Morad, S. A. and Cabot, M. C. (2013) Ceramide-orchestrated signalling in cancer cells, Nat. Rev. Cancer, 13, 51-65, doi: 10.1038/nrc3398.
  103. Tan, S. F., Liu, X., Fox, T. E., Barth, B. M., Sharma, A., Turner, S. D., Awwad, A., Dewey, A., Doi, K., Spitzer, B., Shah, M. V., Morad, S. A., Desai, D., Amin, S., Zhu, J., Liao, J., Yun, J., Kester, M., Claxton, D. F., Wang, H. G., and Loughran, T. P., Jr (2016) Acid ceramidase is upregulated in AML and represents a novel therapeutic target, Oncotarget, 7, 83208-83222, doi: 10.18632/oncotarget.13079.
  104. Xu, R., Jin, J., Hu, W., Sun, W., Bielawski, J., Szulc, Z., Taha, T., Obeid, L. M., and Mao, C. (2006) Golgi alkaline ceramidase regulates cell proliferation and survival by controlling levels of sphingosine and S1P, FASEB J., 20, 1813-1825, doi: 10.1096/fj.05-5689com.
  105. Coant, N., Sakamoto, W., Mao, C., and Hannun, Y. A. (2017) Ceramidases, roles in sphingolipid metabolism and in health and disease, Adv. Biol. Regul., 63, 122-131, doi: 10.1016/j.jbior.2016.10.002.
  106. Maeda, I., Takano, T., Matsuzuka, F., Maruyama, T., Higashiyama, T., Liu, G., Kuma, K., and Amino, N. (1999) Rapid screening of specific changes in mRNA in thyroid carcinomas by sequence specific-differential display: decreased expression of acid ceramidase mRNA in malignant and benign thyroid tumors, Int. J. Cancer, 81, 700-704, doi: 10.1002/(sici)1097-0215(19990531)81:5<700::aid-ijc5>3.0.co;2-d.
  107. Roh, J. L., Park, J. Y., Kim, E. H., and Jang, H. J. (2016) Targeting acid ceramidase sensitises head and neck cancer to cisplatin, Eur. J. Cancer, 52, 163-172, doi: 10.1016/j.ejca.2015.10.056.
  108. Poterala-Hejmo, A., Golda, A., Pacholczyk, M., Student, S., Tylki-Szymańska, A., and Lalik, A. (2020) A possible role for arylsulfatase G in dermatan sulfate metabolism, Int. J. Mol. Sci., 21, 4913, doi: 10.3390/ijms21144913.
  109. Kolter, T., and Sandhoff, K. (2005) Principles of lysosomal membrane digestion: stimulation of Sphingolipid degradation by sphingolipid activator proteins and anionic lysosomal lipids, Annu. Rev. Cell Dev. Biol., 21, 81-103, doi: 10.1146/annurev.cellbio.21.122303.120013.
  110. Garcia, J., Callewaert, N., and Borsig, L. (2007) P-selectin mediates metastatic progression through binding to sulfatides on tumor cells, Glycobiology, 17, 185-196, doi: 10.1093/glycob/cwl059.
  111. Simonis, D., Schlesinger, M., Seelandt, C., Borsig, L., and Bendas, G. (2010) Analysis of SM4 sulfatide as a P-selectin ligand using model membranes, Biophys. Chem., 150, 98-104, doi: 10.1016/j.bpc.2010.01.007.
  112. Waggoner, D. W., Gómez-Muñoz, A., Dewald, J., and Brindley, D. N. (1996) Phosphatidate phosphohydrolase catalyzes the hydrolysis of ceramide 1-phosphate, lysophosphatidate, and sphingosine 1-phosphate, J. Biol. Chem., 271, 16506-16509, doi: 10.1074/jbc.271.28.16506.
  113. Boudker, O., and Futerman, A. H. (1993) Detection and characterization of ceramide-1-phoSphate phosphatase activity in rat liver plasma membrane, J. Biol. Chem., 268, 22150-22155.
  114. Long, J., Darroch, P., Wan, K. F., Kong, K. C., Ktistakis, N., Pyne, N. J., and Pyne, S. (2005) Regulation of cell survival by lipid phosphate phosphatases involves the modulation of intracellular phosphatidic acid and sphingosine 1-phosphate pools, Biochem. J., 391, 25-32, doi: 10.1042/BJ20050342.
  115. Zhao, Y., Usatyuk, P. V., and Cummings, R. (2005) Lipid phosphate phosphatase-1 regulates lysophosphatidic acid-induced calcium release, NF-kappaB activation and interleukin-8 secretion in human bronchial epithelial cells, Biochem. J., 385, 493-502, doi: 10.1042/BJ20041160.
  116. Kihara, A., Mitsutake, S., Mizutani, Y., and Igarashi, Y. (2007) Metabolism and biological functions of two phosphorylated sphingolipids, sphingosine 1-phosphate and ceramide 1-phosphate, Prog. Lipid Res., 46, 126-144, doi: 10.1016/j.plipres.2007.03.001.
  117. Uranbileg, B., Kurano, M., Kano, K., Sakai, E., Arita, J., Hasegawa, K., Nishikawa, T., Ishihara, S., Yamashita, H., Seto, Y., Ikeda, H., Aoki, J., and Yatomi, Y. 2022) Sphingosine 1-phosphate lyase facilitates cancer progression through converting sphingolipids to glycerophospholipids, Clin. Transl. Med., 12, e1056, doi: 10.1002/ctm2.1056.
  118. Hibbs, K., Skubitz, K. M., Pambuccian, S. E., Casey, R. C., Burleson, K. M., Oegema, T. R., Jr, Thiele, J. J., Grindle, S. M., Bliss, R. L., and Skubitz, A. P. (2004) Differential gene expression in ovarian carcinoma: identification of potential biomarkers, Am. J. Pathol., 165, 397-414, doi: 10.1016/S0002-9440(10)63306-8.
  119. Uranbileg, B., Ikeda, H., Kurano, M., Enooku, K., Sato, M., Saigusa, D., Aoki, J., Ishizawa, T., Hasegawa, K., Kokudo, N., and Yatomi, Y. (2016) Increased mRNA levels of sphingosine kinases and S1P lyase and reduced levels of S1P were observed in hepatocellular carcinoma in association with poorer differentiation and earlier recurrence, PloS One, 11, e0149462, doi: 10.1371/journal.pone.0149462.
  120. Uranbileg, B., Nishikawa, T., Ikeda, H., Kurano, M., Sato, M., Saigusa, D., Aoki, J., Watanabe, T., and Yatomi, Y. (2018) Evidence suggests sphingosine 1-phosphate might be actively generated, degraded, and transported to extracellular spaces with increased S1P2 and S1P3 expression in colon cancer, Clin. Colorectal Cancer, 17, e171-e182, doi: 10.1016/j.clcc.2017.11.004.
  121. Oskouian, B., Sooriyakumaran, P., Borowsky, A. D., Crans, A., Dillard-Telm, L., Tam, Y. Y., Bandhuvula, P., and Saba, J. D. (2006) Sphingosine-1-phosphate lyase potentiates apoptosis via p53- and p38-dependent pathways and is down-regulated in colon cancer, Proc. Natl. Acad. Sci. USA, 103, 17384-17389, doi: 10.1073/pnas.0600050103.

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies