Microplastic Content in the Gastrointestinal Tract of Some Fish Species of Lake Kubenskoe (Vologda Oblast)

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Quantitative assessment of microplastic content in the gastrointestinal tract of perch, roach and bream of Kubenskое Lake in the Vologda region was conducted. Microplastics were detected in 60% of bream specimens and 43% of perch specimens. No plastic microparticles were found in the gastrointestinal tract of the roach. It was found average number of microplastic particles was 1.6 ± 0.4 items per individual of bream, and 4.2 ± 1.4 items of microplastic per individual of perch. Microplastics in the gastrointestinal tract of fish were mainly represented by fibers with a small proportion of fragments and films. No significant differences (р >0.05) in the content of microplastics in the gastrointestinal tract of benthivorous (bream) and euryphage (perch) were found. The data obtained are the first evidence of the presence of microplastics in fish of the Vologda Oblast water bodies.

Texto integral

Acesso é fechado

Sobre autores

N. Tropin

Tomsk State University; Vologda Branch of the Russian Federal Research Institute of Fisheries and Oceanography

Autor responsável pela correspondência
Email: nikolay-tropin1@yandex.ru
Rússia, Tomsk; Vologda

S. Rakhmatullina

Tomsk State University; Vologda Branch of the Russian Federal Research Institute of Fisheries and Oceanography

Email: nikolay-tropin1@yandex.ru
Rússia, Tomsk; Vologda

E. Vorobiev

Tomsk State University

Email: nikolay-tropin1@yandex.ru
Rússia, Tomsk

D. Vorobiev

Tomsk State University

Email: nikolay-tropin1@yandex.ru
Rússia, Tomsk

Yu. Frank

Tomsk State University

Email: nikolay-tropin1@yandex.ru
Rússia, Tomsk

Bibliografia

  1. Болотова Н.Л., Воробьев Г.А. 2007. Озеро Кубенское // Природа Вологодской области. Вологда: Изд. Дом Вологжанин. С. 137.
  2. Веселова М.Ф. 1977. Природные условия бассейна оз. Кубенского // Озеро Кубенское. Л.: Наука. Ч. 1. С. 5.
  3. Гущин А.В., Веремейчик Я.В. 2019. Микропластик в пище балтийской песчанки Ammodytes tobianus литорали Куршской косы Балтийского моря // Вопр. ихтиологии. Т. 59. № 4. С. 492. https://doi.org/10.1134/S004287521904009X
  4. Дгебуадзе Ю.Ю., Чернова О.Ф. 2009. Чешуя рыб как диагностическая и регистрирующая структура. М.: Тов-во науч. изд. КМК.
  5. Комов В.Т., Лазарева В.И., Степанова И.К. 1997. Антропогенное закисление малых озер севера Европейской части России // Биология внутр. вод. № 3. С. 5.
  6. Нохрин Д.Ю. 2018. Лабораторный практикум по биостатистике. Челябинск: Изд-во Челябинск. гос. ун-та.
  7. Правдин И.Ф. 1966. Руководство по изучению рыб. М.: Пищ. пром-сть.
  8. Тропин Н.Ю. 2008. Окунь в крупных водоемах Вологодской области // Рыбоводство и рыбн. хоз-во. № 10. С. 29.
  9. Тропин Н.Ю. 2020. Эколого-биологические особенности и промысловое значение речного окуня (Perca fluviatilis L., 1758) в крупных рыбохозяйственных водоемах Вологодской области: Автореф. дис. … канд. биол. наук. Томск. С. 24.
  10. Тропин Н.Ю. 2022. Пищевые стратегии пресноводных рыб и потребление ими микропластика // Матер. I Всерос. конф. с междунар. участием по загрязнению окружающей среды микропластиком “MicroPlasticsEnvironment-2022” (МРЕ-2022). Томск: Изд-во Томск. гос. ун-та. С. 106.
  11. Тропин Н.Ю., Борисов М.Я., Угрюмова Е.В. и др. 2019. Содержание ртути в мышечной ткани речного окуня (Perca fluviatilis (L.)) крупных водоемов Вологодской области // Токсикол. вестн. № 2. С. 53. https://doi.org/10.36946/0869-7922-2019-2-53-58
  12. Чугунова Н.И. 1959. Руководство по изучению возраста и роста рыб. М.: Советская наука.
  13. Щербина Г.Х. 2008. Структура биоценоза Dreissena polymorpha (Pallas) и роль моллюска в питании плотвы Rutilus rutilus (Linnaeus) // Биология внутр. вод. № 4. С. 72.
  14. Щербина Г.Х. 2021. Сравнительный анализ пищевого спектра леща Abramis brama L. (Cyprinidae, Pisces) на разнотипных участках Рыбинского водохранилища // Биология внутр. вод. № 5. С. 511. https://doi.org/10.31857/S0320965221040124
  15. Adeogun A.O., Ibor O.R., Khan E.A., et al. 2020. Detection and occurrence of microplastics in the stomach of commercial fish species from a municipal water supply lake in southwestern Nigeria // Environ. Sci. Pollut. Res. № 27. P. 31035. https://doi.org/10.1007/s11356-020-09031-5
  16. Anderson J.C., Park B.J., Palace V.P. 2016. Microplastics in aquatic environments: Implications for Canadian ecosystems // Environ. Pollut. V. 218. P. 269. https://doi.org/10.1016/j.envpol.2016.06.074
  17. Arias A.H., Ronda A.C., Oliva A.L. et al. 2019. Evidence of microplastic ingestion by fish from the Bahía Blanca Estuary in Argentina, South America // Bull. Environ. Contam. Toxicol. № 102. P. 750. https://doi.org/10.1007/s00128-019-02604-2
  18. Barboza L.G.A., Lopes C., Oliveira P. et al. 2020. Microplastics in wild fish from North East Atlantic Ocean and its potential for causing neurotoxic effects, lipid oxidative damage, and human health risks associated with ingestion exposure // Sci. Total Environ. V. 717. P. 134625.
  19. https: //doi.org/10.1016/j.scitotenv.2019.134625
  20. Bellas J., Martínez-Armental J., Martínez-Cámara A. et al. 2016. Ingestion of microplastics by demersal fish from the Spanish Atlantic and Mediterranean coasts // Mar. Pollut. Bull. V. 109. P. 55. https://doi.org/10.1016/j.marpolbul.2016.06.026
  21. Bellasi A., Binda G., Pozzi A. et al. 2020. Microplastic Contamination in Freshwater Environments: A Review, Focusing on Interactions with Sediments and Benthic Organisms // Environments. V. 7. Is. 4. https://doi.org/10.3390/environments7040030
  22. Campbell S.H., Williamson P.R., Hall B.D. 2017. Microplastics in the gastrointestinal tracts of fish and the water from an urban prairie creek // FACETS. № 2. P. 395. https://doi.org/10.1139/facets-2017-0008
  23. Capone A., Petrillo M., Misic C. 2020. Ingestion and elimination of anthropogenic fibres and microplastic fragments by the European anchovy (Engraulis encrasicolus) of the NW Mediterranean Sea // Mar. Biol. V. 167. Р. 166. https://doi.org/10.1007/s00227-020-03779-7
  24. Castro-Castellon A.T., Horton A.A., Hughes J.M.R. et al. 2021. Ecotoxicity of microplastics to freshwater biota: Considering exposure and hazard across trophic levels // Sci. Total Environ. V. 816. Р. 151638. https://doi.org/10.1016/j.scitotenv.2021.151638
  25. Dawson A.L., Motti C.A. and Kroon F.J. 2020. Solving a sticky situation: Microplastic analysis of lipid-rich tissue // Front Environ. Sci. V. 8. https://doi.org/10.3389/fenvs.2020.563565
  26. Eriksen M., Mason S., Wilson S. et al. 2013. Microplastic pollution in the surface waters of the Laurentian Great Lakes // Mar. Pollut. Bull. V. 77. P. 177. https://doi.org/10.1016/j.marpolbul.2013.10.007
  27. Frank Yu.A., Vorobiev E.D., Babkina I.B. et al. 2020. Microplastics in fish gut, first records from the Tom River in West Siberia // Вестн. Томск. гос. ун-та. Биология. № 52. C. 130. https://doi.org/10.17223/19988591/52/7
  28. Frank Yu., Vorobiev D., Mandal A. et al. 2023. Freshwater Fish Siberian Dace Ingest Microplastics in the Remote Yenisei Tributary // Toxics. V. 11. Iss. 38. https://doi.org/10.3390/toxics11010038
  29. Frias J.P.G.L., Nash R. 2019. Microplastics: Finding a consensus on the definition // Mar. Pollut. Bull. V. 138. P. 145. https://doi.org/10.1016/j.marpolbul.2018.11.022
  30. Hidalgo-Ruz V., Gutow L., Thompson R.C. et al. 2012. Microplastics in the marine environment: a review of the methods used for identification and quantification // Environ. Sci. Technol. V. 46(6). P. 3060. https://doi.org/10.1021/es2031505
  31. Hammer Ø., Harper D.A.T., Ryan P.D. 2001. Past: palaeontological statistics software package for education and data analysis // Palaeontologica Electronica. V. 1. P. 49. https:// Palaeoelectronica.org/2001_1/past/issue1_01.htm (дата обращения: 05.12.2022).
  32. Jabeen K., Su L., Li J.N. et al. 2017. Microplastics and mesoplastics in fish from coastal and fresh waters of China // Environ. Pollut. V. 221. P. 141. https://doi.org/10.1016/j.envpol.2016.11.055
  33. Jahan S., Strezov V., Weldekidan H. et al. 2019. Interrelationship of microplastic pollution in sediments and oysters in a seaport environment of the eastern coast of Australia // Sci. Total Environ. V. 695. P. 133924. https://doi.org/10.1016/j.scitotenv.2019.133924
  34. McNeish R.E., Kim L.H., Barrett H.A. et al. 2018. Microplastic in riverine fish is connected to species traits //
  35. Scientific Reports. V. 8:11639. https://doi.org/10.1038/s41598-018-29980-9
  36. Horton A.A., Jürgens M.D., Lahive E. et al. 2018. The influence of exposure and physiology on microplastic ingestion by the freshwater fish Rutilus rutilus (roach) in the River Thames, UK // Environ. Pollut. V. 236. P. 188. https://doi.org/10.1016/j.envpol.2018.01.044
  37. Pegado T.S.E.S., Schmid K., Winemiller K.O. et al. 2018. First evidence of microplastic ingestion by fishes from the Amazon River estuary // Mar. Pollut. Bull. V. 133. P. 814. https:// doi.org/10.1016/j.marpolbul.2018.06.035
  38. Student S. 1908. The probable error of a mean // Biometrika. V. 6. № 1. P. 1.
  39. Wang W., Ge J., Yu X. 2000. Bioavailability and toxicity of microplastics to fish species: A review // Ecotoxicol. Environ. Saf. V. 189. Р. 109913. https://doi.org/10.1016/j.ecoenv.2019.109913
  40. Wong J.K.H., Lee K.K., Tang K.H.D. et al. 2020. Microplastics in the freshwater and terrestrial environments: Prevalence, fates, impacts and sustainable solutions // Sci. Total Environ. V. 719. P. 137512. https://doi.org/10.1016/j.scitotenv.2020.137512
  41. Zheng K., Fan Y., Zhu Z. et al. 2019. Occurrence and species-specific distribution of plastic debris in wild freshwater fish from the Pearl River catchment, China // Environ. Toxicol. Chem. V. 38. P. 1504. https://doi.org/10.1002/etc.4437

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Рис. 1. Распределение частиц микропластика по размеру: 1 – 0.15–0.30; 2 – 0.31–1.00; 3 – 1.01–2.00; 4 –2.01–3.00; 5 – 3.01–4.00; 6 – 4.01–5.00 (а, в) и форме: 1– пленки; 2 – волокна; 3 – фрагменты (б, г) в ЖКТ исследованных особей Abramis brama (а, б) и Perca fluviatilis (в, г).

Baixar (303KB)
3. Рис. 2. Частицы микропластика, найденные в ЖКТ Abramis brama (а–в, е) и Perca fluviatilis (г, д, ж–и). Масштабная линейка равна 1 мм.

Baixar (494KB)

Declaração de direitos autorais © The Russian Academy of Sciences, 2024

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies