Early Detection of Contamination with Microplastics by Changing the Phototaxis of Freshwater Mesozooplankton to Paired Photostimulation

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Our previous studies showed that the change in the plankton response to light could be an indicator of environmental pollution. This study experimentally reveals that the response of Daphnia magna Straus and Daphnia pulex plankton ensembles to photostimulation depends on the intensity of the attracting light. This makes it difficult to identify the occurrence and change of pollutant concentration. The large variability in the magnitude of the behavioral response is caused by the nonlinear response of plankton ensembles to the intensity of the attractor stimulus. As the intensity of the photostimulation increases, the variability of the phototropic response passes through increase, decrease and relative stabilization phases. The paper proposes a modification of the photostimulation method — paired photostimulation involving successive exposure to two photostimuli of increasing intensity. The first stimulus stabilizes the behavioral response, while the increase in response to the second stimulus makes it possible to more accurately assess the responsiveness of the plankton ensemble. The study demonstrates good reliability and increased sensitivity of this method of detecting changes in environmental toxicity compared to single photostimulation or traditional bioindication through the survival rate of test organisms.

Толық мәтін

Рұқсат жабық

Авторлар туралы

V. Dyomin

National Research Tomsk State University

Email: S.morgalev@gmail.com
Ресей, Tomsk

Yu. Morgalev

Center for Biotesting of Nanotechnologies and Nanomaterials Safety, National Research, Tomsk State University

Email: S.morgalev@gmail.com
Ресей, Tomsk

S. Morgalev

Center for Biotesting of Nanotechnologies and Nanomaterials Safety, National Research, Tomsk State University

Email: S.morgalev@gmail.com
Ресей, Tomsk

T. Morgaleva

Center for Biotesting of Nanotechnologies and Nanomaterials Safety, National Research, Tomsk State University

Хат алмасуға жауапты Автор.
Email: S.morgalev@gmail.com
Ресей, Tomsk

A. Davydova

National Research Tomsk State University

Email: S.morgalev@gmail.com
Ресей, Tomsk

I. Polovtsev

National Research Tomsk State University

Email: S.morgalev@gmail.com
Ресей, Tomsk

O. Kondratova

Center for Biotesting of Nanotechnologies and Nanomaterials Safety, National Research, Tomsk State University

Email: S.morgalev@gmail.com
Ресей, Tomsk

A. Kosiakova

Center for Biotesting of Nanotechnologies and Nanomaterials Safety, National Research, Tomsk State University

Email: S.morgalev@gmail.com
Ресей, Tomsk

A. Mostovaya

Center for Biotesting of Nanotechnologies and Nanomaterials Safety, National Research, Tomsk State University

Email: S.morgalev@gmail.com
Ресей, Tomsk

Әдебиет тізімі

  1. Ильина О.В., Колобов М.Ю., Ильинский В.В. 2021. Пластиковое загрязнение прибрежных поверхностных вод среднего и южного Байкала // Водн. ресурсы. Т. 48(1). С. 42. https://doi.org/10.31857/s0321059621010181
  2. Ержанова А.Е. Гигиеническое нормирование. https://ppt-online.org/123121. Accessed May 03, 2023.
  3. Сапрыкин А., Самойлов П.П. 2021. Микро- и нанопластики в окружающей среде (Аналитика, источники, распределение и проблемы экологии) // Экология. Сер. аналитических обзоров мировой литературы. № 110. С. 1. https://www.spsl.nsc.ru/wp-content/uploads/2022/04/V_110.pdf
  4. Anokhin P.K. 1974. Biology and Neurophysiology of the Conditioned Reflex and Its Role in Adaptive Behavior. Oxford: Pergamon Press. https://archive.org/details/biologyneurophys0000anok
  5. Au S.Y., Bruce T.F., Bridges W.C., Klaine S.J. 2015. Responses of Hyalella azteca to acute and chronic microplastic exposures // Environ. Toxicol. Chem. V. 34. P. 2564. https://doi.org/10.1002/etc.3093
  6. Bai Z., Wang N., Wang M. 2021. Effects of microplastics on marine copepods // Ecotoxicol. Environ. Saf. V. 217. P. 112243. https://doi.org/10.1016/j.ecoenv.2021.112243
  7. Bedrossiantz J., Martínez-Jerónimo F., Bellot M. et al. 2020. A high-throughput assay for screening environmental pollutants and drugs impairing predator avoidance in Daphnia magna // Sci. Total Environ. V. 740. P. 14004520. https://doi.org/10.1016/j.scitotenv.2020.140045
  8. Besseling E., Wang B., Lurling M., Koelmans A.A. 2014. Nanoplastic affects growth of S. obliquus and reproduction of D. magna // Environ. Sci. Technol. V. 48. P. 12336. https://doi.org/10.1021/es503001d
  9. Bhuvaneshwari M., Sagar B., Doshi S. et al. 2017. Comparative study on toxicity of ZnO and TiO2 nanoparticles on Artemia salina: effect of pre-UV-A and visible light irradiation // Environ. Sci. Pollut. Res. V. 24. P. 5633. https://doi.org/10.1007/s11356-016-8328-z
  10. Browne M.A., Nive S.J., Galloway T.S. et al. 2013. Microplastic moves pollutants and additives to worms, reducing functions linked to health and biodiversity // Curr. Biol. V. 23. P. 2388. https://doi.org/10.1016/j.cub.2013.10.012
  11. Browne M.A., Underwood A.J., Chapman M.G. et al. 2015. Linking effects of anthropogenic debris to ecological impacts // Proc. Biol. Sci. V. 282(1807). P. 20142929. https://dx.doi.org/10.1098/rspb.2014.2929
  12. Colangeli P., Schlägel U.E., Obertegger U. et al. 2019. Negative phototactic response to UVR in three cosmopolitan rotifers: A video analysis approach // Hydrobiologia. V. 844. P. 43. https://doi.org/10.1007/s10750-018-3801-y
  13. Cole M., Lindeque P., Fileman E. et al. 2015. The impact of polystyrene microplastics on feeding, function and fecundity in the marine copepod Calanus helgolandicus // Environ. Sci. Technol. V. 49(2). P. 1130. https://doi.org/10.1021/es504525u
  14. Cózar A., Echevarría F., González-Gordillo J.I. et al. 2014. Plastic debris in the open ocean // Proc. Natl. Acad. Sci. USA. V. 111(28). P. 10244. https://doi.org/10.1073/pnas.1314705111
  15. Dyomin V., Davydova A., Olshukov A., Polovtsev I. 2019а. Hardware means for monitoring research of plankton in the habitat: problems, state of the art, and prospects // OCEANS. Marseille. Marseille. France. P. 1. https://doi.org/10.1109/OCEANSE.2019.8867512
  16. Dyomin V., Gribenyukov A., Davydova A. et al. 2019b. Holography of particles for diagnostic tasks // Applied Optics. V. 58. P. 300. https://doi.org/10.1364/AO.58.00G300
  17. Dyomin V., Davydova A., Morgalev Y. et al. 2020. Planktonic response to light as a pollution indicato // J. Great Lakes Res. V. 46(1). P. 41. https://doi.org/10.1016/j.jglr.2019.10.012
  18. Dyomin V., Morgalev Y., Polovtsev I. et al. 2021. Phototropic response features for different systematic groups of mesoplankton under adverse environmental conditions // Ecol. Evol. V. 11(23). P. 16487. https://doi.org/10.1002/ece3.8072
  19. Frank Y.A., Vorobiev D.S., Kayler O.A. et al. 2021. Evidence for Microplastics Contamination of the Remote Tributary of the Yenisei River, Siberia — The Pilot Study Results // Water. V. 13(23). P. 3248. https://doi.org/.org/10.3390/w13223248
  20. Ivanova E.V., Pozdnyakov Sh.R., Tikhonova D.A. 2021. Analysis of microplastic concentrations in water and bottom sediments as a new aspect of ecological monitoring // IOP Conf. Ser.: Earth Environ. Sci. V. 834. P. 12057. https://doi.org/10.1088/1755-1315/834/1/012057
  21. Jambeck J.R., Geyer R., Wilcox C. et al. 2015. Plastic waste inputs from land into the ocean // Science. V. 347. P. 768. https://dx.doi.org/10.1126/science.1260352
  22. Karami A., Romano N., Galloway T., Hamzah H. 2016. Virgin microplastics cause toxicity and modulate the impacts of phenanthrene on biomarker responses in African catfish (Clarias gariepinus) // Environ Res. V. 151. P. 58. https://doi.org/10.1016/j.envres.2016.07.024
  23. Kim H., Lee J., Hagiwara A. 2018. Phototactic behavior of live food rotifer Brachionus plicatilis species complex and its significance in larviculture: A review // Aquaculture. V. 497. P. 253. https://doi.org/10.1016/j.aquaculture.2018.07.070
  24. Lehutso R., Wesley-Smith J., Thwala M. 2021. Aquatic Toxicity Effects and Risk Assessment of ‘Form Specific’ Product-Released Engineered Nanomaterials // Int. J. Mol. Sci. V. 22. P. 12468. https://doi.org/10.3390/ijms22221246
  25. Lisina A.A., Platonov M.M., Lomakov O.L. et al. 2021. Microplastic Abundance in Volga River: Results of a Pilot Study in Summer 2020 // Geography, Environment, Sustainability. V. 14(3). P. 82. https://doi.org/10.24057/2071-9388-2021-041
  26. Li W.C., Tse H.F., Fok L. 2016. Plastic waste in the marine environment: A review of sources, occurrence and effects // Sci. Total Environ. V. 566. P. 333. https://doi.org/10.1016/j.scitotenv.2016.05.084
  27. Lu Y., Zhang Y., Deng Y. et al. 2016. Uptake and accumulation of polystyrene microplastics in zebrafish (Danio rerio) and toxic effects in liver // Environ. Sci. Technol. V. 50(7). P. 4054. https://doi.org/10.1021/acs.est.6b00183
  28. Maher T., Zaccariello D., Stearns D. 2014. Photobehavioral Responses of Daphnia magna to Selected Light Cues // www.eposters.net/pdfs/photobehavioral-responses-of-daphnia-magna-to-selected-light-cues.pdf. Accessed May 03, 2023.
  29. Mattsson K., Johnson E.V., Malmendal A. et al. 2017. Brain damage and behavioural disorders in fish induced by plastic nanoparticles delivered through the food chain // Sci. Reports. V. 7(1). P. 11452. https://doi.org/10.1038/s41598-017-10813-0
  30. Mimouni P., Luciani A., Clément P. 1993. How females of the rotifer Asplanchna brightwelli swim in darkness and light: An automated tracking study // Hydrobiologia V. 255. P. 101. https://doi.org/10.1007/BF00025827
  31. Moeller H.V., Laufkötter C., Sweeney E.M., Johnson M.D. 2019. Light-dependent grazing can drive formation and deepening of deep chlorophyll maxima // Nat. Commun. V. 10. P. 1978. https://doi.org/10.1038/s41467-019-09591-2
  32. Morgalev Yu., Dyomin V., Morgalev S. et al. 2022. Environmental Contamination with Micro- and Nanoplastics Changes the Phototaxis of Euryhaline Zooplankton to Paired Photostimulation // Water. V. 14. P. 3918. https://doi.org/10.3390/w14233918
  33. Morgalev Yu.N., Morgaleva T.G. 2007. Species and individual features of hemodynamic reactions in hypobarical hypoxia // Tomsk State University J. V. 300(2). P. 186.
  34. Nava V., Chandra S., Aherne J. et al. 2023. Plastic debris in lakes and reservoirs // Nature. V. 619. P. 317. https://doi.org/.org/10.1038/s41586-023-06168-4
  35. Ogonowski M., Schür C., Jarse´n Å., Gorokhova E. 2016. The effects of natural and anthropogenic microparticles on individual fitness in Daphnia magna // PLoS One. V. 11(5). P. e0155063. https://doi.org/10.1371/journal.pone.0155063
  36. Overholt E.P., Rose K.C., Williamson C.E. et al. 2016. Behavioral responses of freshwater calanoid copepods to the presence of ultraviolet radiation: Avoidance and attraction // J. Plankton Res. V. 38. P. 16. https://doi.org/10.1093/plankt/fbv113
  37. Pedrotti M.L., Lombard F., Baudena A. et al. 2022. An integrative assessment of the plastic debris load in the Mediterranean Sea // Sci. Total Еnviron. V. 838. P. 155958. https://doi.org/10.1016/j.scitotenv.2022.155958
  38. Phuong N.N., Zalouk-Vergnoux A., Poirier L. et al. 2016. Is there any consistency between the microplastics found in the field and those used in laboratory experiments? // Environ. Pollut. V. 211. P. 111. https://doi.org/10.1016/j.envpol.2015.12.035
  39. Rehse S., Kloas W., Zarfl C. 2016. Short-term exposure with high concentrations of pristine microplastic particles leads to immobilisation of Daphnia magna // Chemosphere. V. 153. P. 91. https://doi.org/10.1016/j.chemosphere.2016.02.133
  40. Rochman C.M., Hoh E., Kurobe T., Teh S.J. 2013. Ingested plastic transfers hazardous chemicals to fish and induces hepatic stress // Sci. ReP. V. 3. P. 3263. https://doi.org/10.1038/srep0326
  41. Romero-Blanco A., Remón-Elola A., Alonso, Á. 2021. Assessment of the Effects of Environmental Concentrations of Microplastics on the Aquatic Snail Potamopyrgus antipodarum // Water, Air and Soil Pollut. V. 232. P. 438. https://doi.org/10.1007/s11270-021-05379-7
  42. Scherer C., Weber A., Lambert S., Wagner M. 2018. Interactions of microplastics with freshwater biota, in Freshwater microplastics Emerging. Environmental Contaminants? Cham: Springer. P. 153. https://link.springer.com/content/pdf/10.1007/978-3-319-61615-5.pdf
  43. Sha Y., Zhang H., Lee M. et al. 2021. Diel vertical migration of copepods and its environmental drivers in subtropical Bahamian blue holes // Aquat. Ecol. V. 55. P. 1157. https://doi.org/10.1007/s10452-020-09807-4
  44. Simão F.C.P., Martínez-Jerónimo F., Blasco V., Moreno F. et al. 2019. Using a new high-throughput video-tracking platform to assess behavioural changes in Daphnia magna exposed to neuro-active drugs // Sci. Total Environ. V. 662. P. 160. https://doi.org/10.1016/j.scitotenv.2019.01.187
  45. Storz U., Paul R. 1998. Phototaxis in water fleas (Daphnia magna) is differently influenced by visible and UV light // J. ComP. Physiol. A. V. 183. P. 709. https://doi.org/10.1007/s003590050293
  46. Svetlichny L., Isinibilir M., Mykitchak T. et al. 2021. Microplastic consumption and physiological response in Acartia clausi and Centropages typicus: Possible roles of feeding mechanisms // Regional Studies in Mar. Sci. V. 43. P.101650. https://doi.org/10.1016/j.rsma.2021.101650
  47. Van Sebille E., Wilcox C., Lebreton L. et al. 2015. A global inventory of small floating plastic debris // Environ. Res. Lett. V. 10. P. 124006. https://dx.doi.org/10.1088/1748-9326/10/12/124006
  48. Vasilopoulou G., Kehayias G., Kletou D. et al. 2021. Microplastics Investigation Using Zooplankton Samples from the Coasts of Cyprus (Eastern Mediterranean) // Water. V. 13. P. 2272. https://doi.org/10.3390/w13162272
  49. Von Moos N., Burkhardt-Holm P., Köhler A. 2012. Uptake and effects of microplastics on cells and tissue of the blue mussel Mytilus edulis L. after an experimental exposure // Environ. Sci. Technol. V. 46(20). P. 11327. https://doi.org/10.1021/es302332w
  50. Wagner M., Lambert S. 2018. Freshwater microplastics: emerging environmental contaminants? // Springer Nature. https://link.springer.com/content/pdf/10.1007/ 978-3-319-61615-5.pdf
  51. Wagner M., Scherer Ch., Alvarez-Muñoz D. et al. 2014. Microplastics in freshwater ecosystems: what we know and what we need to know // Environ. Sci. Europe. V. 26. P. 12. https://doi.org/10.1186/s12302-014-0012-7
  52. Weber A., Scherer C., Brennholt N. et al. 2018. PET microplastics do not negatively affect the survival, development, metabolism and feeding activity of the freshwater invertebrate Gammarus pulex // Environ. Pollut. V. 234. P. 181. https://dx.doi.org/10.1016/j.envpol.2017.11.014
  53. Weiss A., Chambon V., Lee J.K. et al. 2021. Interacting with volatile environments stabilizes hidden-state inference and its brain signatures // Nat. Commun. V. 12. P. 2228. https://doi.org/10.1038/s41467-021-22396-6
  54. Welden N.A., Cowie P.R. 2016. Environment and gut morphology influence microplastic retention in langoustine, Nephrops norvegicus // Environ Pollut. V. 214. P. 859. https://doi.org/10.1016/j.envpol.2016.03.067
  55. Wong B.B., Candolin U. 2015. Behavioral responses to changing environments // BehaV. Ecol. V. 26. P. 665. https://dx.doi.org/10.1093/beheco/aru183
  56. Wright S.L., Thompson R.C., Galloway T.S. 2013. The physical impacts of microplastics on marine organisms: a review // Environ. Pollut. V. 178. P. 483. https://doi.org/10.1016/j.envpol.2013.02.031

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Рис. 1. Концентрация и размер микропластика: а — изображение частиц микропластика на снимке под конфокальным микроскопом (№ 1‒15 размер ≤10 px, и № 1‒6 размер >10 px); б — на диаграмме содержание в образцах частиц размером ≤10 пикселей и >10 пикселей

Жүктеу (151KB)
3. Рис. 2. Схема пучков, формирующих контролируемый объем для регистрации голограммы (а), фотография столбов света с гидробионтами (б). 1 – DHC, 2 – регистрирующий модуль DHC, 3 – освещающий модуль DHC, 4 – емкость с водой, 5 – контролируемый объем (РО), ограниченный пучками регистрирующего (красный) и аттракторного (зеленый) света, 6 – зеркально-призматическая система формирования рабочего объема, 7 – полупроводниковый лазерный диод (λ = 650 нм), 8 – полупроводниковый лазерный диод (λ = 532 нм), 9 – оптоволоконный мультиплексор, 10 – расширитель луча, 11 – иллюминаторы, 12 – селективный фильтр, 13 – принимающая линза, 14 – CMOS камера.

Жүктеу (262KB)
4. Рис. 3. Концентрация рачков (экз./дм³) при ступенчатом непрерывном (а) и ступенчатом прерывистом (б) нарастании интенсивности аттракторного освещения (I, % от максимального).

Жүктеу (110KB)
5. Рис. 4. Концентрация рачков (C, экз./дм³) в зависимости от соотношения интенсивности аттракторного освещения (I, % максимальной) при первой (1) и второй (2) ступенях парной фотостимуляции.

Жүктеу (81KB)
6. Рис. 5. Зависимость концентрации рачков (С, экз./дм³) и прироста их концентрации (∆С/С₂, п.п.) при парной фотостимуляции от концентрации токсиканта CK₂Cr₂O₇, /3.

Жүктеу (110KB)
7. Рис. 6. Динамика показателя ∆С/С₂ рачков Daphnia magna Straus (а) и Daphnia pulex (б) при внесении культивационной воды (1) и CK₂Cr₂O₇, (2) и микропластика (3).

Жүктеу (159KB)
8. Рис. 7. Динамика концентрации D. magna (a) и D. pulex (б) в среде, контаминированной микропластиком.

Жүктеу (154KB)

© The Russian Academy of Sciences, 2024

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>