Feeding of Vampirellid Amoeba (Leptophryidae) on Cyanobacteria

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Harmful cyanobacterial blooms cause serious environmental, social and economic damage, including poisoning of humans and animals. The mitigation of harmful blooms is possible through biological approaches based on trophic interactions between phagotrophic protists and cyanobacteria, i.e., through "top-down control" by predatory microbial eukaryotes. We have conducted experimental studies on the ability of predatory vampyrellid amoebae (Vampyrellida) to feed on the toxic and nontoxic cyanobacteria Microcystis aeruginosa and Aphanizomenon sp. It was found that the vampyrellids Vernalophrys algivore and Kinopus chlorellivorus can actively consume cells of the nontoxic M. aeruginosa strain FACHB928, increasing in abundance, but are unable to feed on the toxic M. aeruginosa strain FACHB905 and Aphanizomenon sp. strain FACHB1399, which form long filamentous trichomes. The results obtained may be useful for the development of biological methods to regulate and control harmful cyanobacterial blooms affecting the ecological balance in aquatic ecosystems and water quality.

About the authors

M. Jiang

Institute of Hydrobiology, Chinese Academy of Sciences; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences

Wuhan, Hubei, China; Beijing, China

Y. Gong

Institute of Hydrobiology, Chinese Academy of Sciences

Wuhan, Hubei, China

D. V Tikhonenkov

Papanin Institute for Biology of Inland Waters Russian Academy of Sciences

Email: tikho-denis@yandex.ru
Borok, Nekouzskii raion, Yaroslavl oblast, Russia

References

  1. Anabtawi H.M., Lee W.H., Al-Anazi A. et al. 2024. Advancements in biological strategies for controlling harmful algal blooms (HABs) // Water. V. 16. № 2. P. 224. https://doi.org/10.3390/w16020224
  2. Chislock M.F., Doster E., Zitomer R.A., Wilson A.E. 2013. Eutrophication: causes, consequences, and controls in aquatic ecosystems // Nature Education Knowledge. V. 4. № 4. P. 10.
  3. Gong Y., Patterson D.J., Li Y. et al. 2015. Vernalophrys algivore gen. nov., sp. nov. (Rhizaria: Cercozoa: Vampyrellida), a new algal predator isolated from outdoor mass culture of Scenedesmus dimorphus // Appl. Environ. Microbiol. V. 81. № 12. P. 3900. https://doi.org/10.1128/AEM.00160-15
  4. Gransden S.G., Lewitus A.J. 2003. Grazing of two euplotid ciliates on the heterotrophic dinoflagellates Pfiesteria piscicida and Cryptoperidiniopsis sp. // Aquat. Microb. Ecol. V. 33. № 3. P. 303. https://doi.org/10.3354/ame033303
  5. Kratina P., Greig H.S., Thompson P.L. et al. 2012. Warming modifies trophic cascades and eutrophication in experimental freshwater communities // Ecology. V. 93. № 6. P. 1421. https://doi.org/10.1890/11-1595.1
  6. Ma M., Wang F., Wei C. et al. 2022. Establishment of high-cell-density heterotrophic cultivation of Poterioochromonas malhamensis contributes to achieving biological control of Microcystis // J. Appl. Phycol. V. 34. № 1. P. 423. https://doi.org/10.1007/s10811-021-02659-x
  7. Ou D., Song L., Gan N., Chen W. 2005. Effects of microcystins on and toxin degradation by Poterioochromonas sp. // Environ. Toxicol. V. 20. № 3. P. 373. https://doi.org/10.1002/tox.20114
  8. Pal M., Yesankar P.J., Dwivedi A., Qureshi A. 2020. Biotic control of harmful algal blooms (HABs): A brief review // J. Environ. Manag. V. 268. P. 110687. https://doi.org/10.1016/j.jenvman.2020.110687
  9. Rippka R., Deruelles J., Waterbury J.B. et al. 1979. Generic assignments, strain histories and properties of pure cultures of cyanobacteria // Microbiology. V. 111. № 1. https://doi.org/10.1099/00221287-111-1-1
  10. Visser P.M., Verspagen J.M.H., Sandrini G. et al. 2016. How rising CO2 and global warming may stimulate harmful cyanobacterial blooms // Harmful Algae. V. 54. P. 145. https://doi.org/10.1016/j.hal.2015.12.006
  11. Yan F., Li M., Zang S. et al. 2024. UV radiation and temperature increase alter the PSII function and defense mechanisms in a bloom-forming cyanobacterium Microcystis aeruginosa // Front. Microbiol. V. 15. P. 1351796. https://doi.org/10.3389/fmicb.2024.1351796
  12. Yang Z., Zhang L., Zhu X. et al. 2016. An evidence-based framework for predicting the impact of differing autotrophheterotroph thermal sensitivities on consumerprey dynamics // ISME J. V. 10. № 7. P. 1767. https://doi.org/10.1038/ismej.2015.225
  13. Zhang X., Hu H., Men Y., Christoffersen K.S. 2010. The effect of Poterioochromonas abundance on production of intra- and extracellular microcystin-LR concentration // Hydrobiologia. V. 652. № 1. P. 237. https://doi.org/10.1007/s10750-010-0335-3
  14. Zhang L., Gu L., Wei Q. et al. 2017. High temperature favors elimination of toxin-producing Microcystis and degradation of microcystins by mixotrophic Ochromonas // Chemosphere. V. 172. P. 96. https://doi.org/10.1016/j.chemosphere.2016.12.146
  15. Zhang H., Patterson D.J., He Y. et al. 2022. Kinopus chlorellivorus gen. nov., sp. nov. (Vampyrellida, Rhizaria), a new algivorous protist predator isolated from large-Scale outdoor cultures of Chlorella sorokiniana // Appl. Environ. Microbiol. V. 88. № 22. e0121522. https://doi.org/10.1128/aem.01215-22

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).