The Profile of Oxidoreductases Activity in the Cardiac and Skeletal Muscle Tissues of Adult and Juvenile Scorpaena porcus (Scorpaenidae)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The oxidoreductases activity (MDH, 1.1.1.37; LDH, 1.1.1.27; catalase, 1.11.1.6) was studied in the white, red muscles and myocardium (heart atrium, ventricle) of adult and juvenile Scorpaena porcus Linnaeus, 1758 as a preadapted to hypoxia species. Tissue and age differences in the magnitude and ratio of oxidoreductases activity were established. A similar value of MDH activity was found in the following tissue pairs: in the atrium and red muscles of adult, as well as in the atrium and white muscles, ventricle and red muscles of juvenile scorpionfish. Catalase activity was associated with the physiological activity of skeletal muscle and increased with the age of the scorpionfish. The commonality of the energy metabolism pathways in the myocardium and skeletal muscles was determined by an age-dependent increase in the efficiency of the heart performance which associated with the initial “anaerobization” of the myocardium as a protective mechanism during O2 deficiency.

About the authors

E. E. Kolesnikova

A.O. Kovalevsky Institute of Biology of the Southern Seas of Russian Academy of Sciences

Sevastopol, Russia

I. V. Golovina

A.O. Kovalevsky Institute of Biology of the Southern Seas of Russian Academy of Sciences

Email: ivgolovina@mail.ru
Sevastopol, Russia

References

  1. Быстрова М.Ф., Буданова Е.Н. 2007. Перекись водорода и пероксиредоксины в редокс-регуляции внутриклеточной сигнализации // Биологические мембраны. Т. 24. № 2. С. 115.
  2. Лав Р.М. 1976. Химическая биология рыб. М.: Пищ. пром-сть.
  3. Морозова А.Ю., Галагудза М.М. 2006. Оценка инфаркт-лимитирующего эффекта пре- и посткондиционирования с помощью определения уровня миокардиальных маркеров // Регионарное кровообращение и микроциркуляция. Т. 5. № 4. С. 90.
  4. Немова Н.Н., Мурзина С.А., Лысенко Л.А. и др. 2019. Эколого-биохимический статус атлантического лосося Salmo salar L. и кумжи Salmo trutta L. в раннем развитии // Журн. общ. биол. Т. 80. № 3. C. 175.
  5. Полонецкий Л.З., Гелис Л.Г., Подпалов В.П. и др. 2011. Диагностика и лечение острых коронарных синдромов с подъемом и без подъема сегмента ST на ЭКГ. Минск: Проф. издания.
  6. Сидоров В.С., Высоцкая Р.У., Костылев Ю.В. 1980. Активность лизосомальных ферментов у взрослых самок озерного лосося Salmo salar L. в период преднерестового созревания // Вопр. ихтиологии. Т. 20. Вып. 4(123). С. 713.
  7. Солдатов А.А. 2023. Случаи спонтанного роста концентрации метгемоглобина в крови костистых рыб на протяжении годового цикла // Биология внутр. вод. № 4. С. 549. https://doi.org/10.31857/S032096522304023X
  8. Столбунова В.В., Герасимов Ю.В. 2025. Скорость замен в COX1 МТДНК, поведение и размер тела плотвы Rutilus rutilus, леща Abramis brama и их реципрокных гибридов // Биология внутр. вод. Т. 18. № 2.
  9. С. 346. https://doi.org/10.31857/S0320965225020104
  10. Тамбовцева Р.В. 2010. Развитие мышечной ткани в онтогенезе // Новые исследования. Т. 1. № 23. С. 81.
  11. Тамбовцева Р.В. 2014. Биохимические особенности онтогенетического развития энергообеспечения мышечной деятельности // Новые исследования. Т. 1. № 38. С. 68.
  12. Чурова М.В., Мещерякова О.В., Немова Н.Н. 2010. Взаимосвязь линейно-весовых характеристик с активностью некоторых ферментов и молекулярно-генетическими показателями в белых мышцах разных возрастных групп сигов из озера Каменное (Республика Карелия) // Современные проблемы физиологии и биохимии водных организмов. Т. 1. № 3. С. 304.
  13. Almeida-Val V.M.F., Val A.L., Duncan W.P. et al. 2000. Scaling effects on hypoxia tolerance in the Amazon fish Astronotus ocellatus (Perciformes: Cichlidae): contribution of tissue enzyme levels // Comp. Biochem. Physiol. Part B: Biochem. Mol. Biol. V. 125. № 2. P. 219. https://doi.org/10.1016/S0305-0491(99)00172-8
  14. Altringham J.D., Ellerby D.J. 1999. Fish swimming: patterns in muscle function // J. Exp. Biol. V. 202. № 23. P. 3397. https://doi.org/10.1242/jeb.202.23.3397
  15. Chalker J., Gardiner D., Kuksal N., Mailloux R.J. 2017. Characterization of the impact of glutaredoxin-2 (GRX2) deficiency on superoxide/hydrogen peroxide release from cardiac and liver mitochondria // Redox Biol. V. 15. P. 216. https://doi.org/10.1016/j.redox.2017.12.006
  16. Driedzic W.R., Stewart J.M. 1982. Myoglobin content and the activities of enzymes of energy metabolism in red and white fish hearts // J. Comp. Physiol. V. 149. № 1. P. 67. https://doi.org/10.1007/BF00735716
  17. Driedzic W.R., Stewart J.M., Scott D.L. 1982. The protective effect of myoglobin during hypoxic perfusion of isolated fish hearts // J. Mol. Cell. Cardiol. V. 14. № 11. P. 673. https://doi.org/10.1016/0022-2828(82)90164-X
  18. Emeretli I.V., Rusinova O.S. 2002. The Activity of Enzymes of the Main Pathways of Carbohydrates Oxidation in Fish Tissues // Hydrobiol. J. V. 38. Iss. 2. P. 70. https://doi.org/10.1615/HydrobJ.v38.i2.70
  19. Farrell A.P., Jones D.R. 1992. The heart. Fish Physiology. XIIA. San Diego: Acad. Press. P. 1.
  20. Feller G., Gerday C. 1987. Metabolic pattern of the heart of haemoglobin-and myoglobin-free Antarctic fish Channichthys rhinoceratus // Polar Biol. № 7. P. 225. https://dx.doi.org/10.1007/BF00287418
  21. Flogel U., Godecke A., Klotz L.O., Schrader J. 2004. Role of myoglobin in the antioxidant defense of the heart // FASEB J. V. 18. № 10. P. 1156. https://doi.org/10.1096/fj.03-1382fje
  22. Halliwell B., Gutteridge J.M.C. 2015. Free Radicals in Biology and Medicine. Oxford: Oxford Univ. Press. https://dx.doi.org/10.1093/acprof:oso/9780198717478.001.0001
  23. Hochachka P.W. 1980. Living without oxygen: closed and open systems in hypoxia tolerance. Cambridge: Harvard Univ. Press. https://doi.org/10.4159/harvard.9780674498266
  24. Hochachka P.W., Matheson G.O. 1992. Regulating ATP turnover rates over broad dynamic work ranges in skeletal muscles // J. Appl. Physiol. V. 73. № 5. P. 1697. https://doi.org/10.1152/jappl.1992.73.5.1697
  25. Hudlick S.O, Pette D., Staudte H. 1973. The relation between blood flow and enzymatic activity in slow and fast muscles during development // Pfliigers Arch. V. 343. P. 341. https://doi.org/10.1007/bf00595821
  26. Johnston I.A., Moon T.W. 1981. Fine structure and metabolism of multiply innervated fast muscle fibres in teleost fish // Cell Tissue Res. V. 219. P. 93. https://doi.org/10.1007/bf00210021
  27. Korshunov S.S., Skulachev V.P., Starkov A.A. 1997. High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria // FEBS letters. V. 416. № 1. P. 15. https://doi.org/10.1016/S0014-5793(97)01159-9
  28. Legate N.J., Bailey J.R., Driedzic W.R. 1998. Oxygen consumption in myoglobin-rich and myoglobin-poor isolated fish cardiomyocytes // J. Exp. Zool. V. 280. № 4. P. 269. https://doi.org/10.1002/(SICI)1097-010X(19980301)280:4<269::AID-JEZ1>3.0.CO;2-M
  29. Li X., May J.M. 2002. Catalase-dependent measurement of H2O2 in intact mitochondria // Mitochondrion. V. 1. № 5. P. 447. https://doi.org/10.1016/S1567-7249(02)00010-7
  30. Mailloux R.J. 2020. An update on mitochondrial reactive oxygen species production // Antioxidants. V. 9. 472. https://doi.org/10.3390/antiox9060472
  31. Otto D.M., Moon T.W. 1996. Endogenous antioxidant systems of two teleost fish, the rainbow trout and the black bullhead, and the effect of age // Fish Physiol. Biochem. V. 15. P. 349. https://doi.org/10.1007/BF02112362
  32. Parente A.D., Bolland D.E., Huisinga K.L., Provost J.J. 2024. Physiology of malate dehydrogenase and how dysregulation leads to disease // Essays in Biochemistry, EBC20230085. V. 68. Iss. 2. P. 121. https://doi.org/10.1042/EBC20230085
  33. Salin K., Auer S.K., Rudolf A.M. et al. 2015. Individuals with higher metabolic rates have lower levels of reactive oxygen species in vivo // Biol. Lett. V. 11. P. 20150538. https://doi.org/10.1098/rsbl.2015.0538
  34. Sanger A.M., Stoiber W. 2001. Muscle fiber diversity and plasticity // Fish Physiol. V. 18. P. 187. https://doi.org/10.1016/S1546-5098(01)18008-8
  35. Shulman G.E., Love R.M. 1999. The Biochemical Ecology of Marine Fishes // Advances in Marine Biol. L.: Acad. Press. V. 36. P. 1.
  36. Slodzinski M.K., Aon M.A., O'Rourke B. 2008. Glutathione oxidation as a trigger of mitochondrial depolarization and oscillation in intact hearts // JMCC. V. 45(5). P. 650. https://doi.org/10.1016/j.yjmcc.2008.07.017
  37. Somero G.N., Childress J.J. 1980. A violation of the metabolismsize scaling paradigm: activities of glycolytic enzymes in muscle increase in larger-size fish // Physiol. Zool. V. 53. P. 322.
  38. Stepanov G. 2023. Pathophysiological mechanisms of adaptation of muscle tissue of descendants of irradiated animals to altering influence of ionizing radiation // J. Education, Health and Sport. V. 48(1). P. 225. https://dx.doi.org/10.12775/JEHS.2023.48.01.017
  39. Tessadori F., van Weerd J.H., Burkhard S.B. et al. 2012. Identification and functional characterization of cardiac pacemaker cells in zebrafish // PLoS ONE. V. 7. P. e47644. https://doi.org/10.1371/journal.pone.0047644
  40. Tota B., Cimini V., Salvatore G., Zummo G. 1983. Comparative study of the arterial and lacunary systems of the ventricular myocardium of elasmobranchs and teleost fishes // Am. J. Anat. V. 167. P. 15. https://doi.org/10.1002/aja.1001670103
  41. Turek Z., Ringnalda B.E., Grandtner M., Kreuzer F. 1973. Myoglobin distribution in the heart of growing rats exposed to a simulated altitude of 3500 m in their youth or born in the low pressure chamber // Pflugers Archiv. V. 340. P. 1. https://doi.org/10.1007/BF00592192
  42. Wilhelm Filho D., Giulivi C., Boveris A. 1993. Antioxidant defences in marine fish – I. Teleosts // Comp. Biochem. Physiol. Part C: Pharmacol. Toxicol. Endocrinol. V. 106. P. 409. https://doi.org/10.1016/0742-8413(93)90154-D
  43. Wittenberg J.B., Wittenberg B.A. 2003. Myoglobin function reassessed // J. Exp. Biol. V. 206. P. 2011. https://doi.org/10.1242/jeb.00243
  44. Zhu K., Wang H., Wang H. et al. 2014. Characterization of muscle morphology and satellite cells, and expression of muscle-related genes in skeletal muscle of juvenile and adult Megalobrama amblycephala // Micron. V. 64. P. 66.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).