Effect of Sodium and Potassium Nitrites on Lung Respiration and Locomotion of the Mollusk Lymnaea stagnalis (Lymnaeidae, Gastropoda)
- Authors: Alshahrani M.H.1,2, Sidorov A.V1
-
Affiliations:
- Belarusian State University
- College of Applied Science Technology
- Issue: Vol 18, No 6 (2025)
- Pages: 1148-1156
- Section: ЭКОЛОГИЧЕСКАЯ ФИЗИОЛОГИЯ И БИОХИМИЯ ГИДРОБИОНТОВ
- URL: https://journals.rcsi.science/0320-9652/article/view/362529
- DOI: https://doi.org/10.7868/S3034522725060135
- ID: 362529
Cite item
Abstract
Behavioral reactions of the fresh-water pond snail (Lymnaea stagnalis) were studied under prolonged action of 1 and 10 mM sodium and potassium nitrite solutions. It was found that 10 mM sodium nitrite solution leads to the one third of the animal's death, from their initial quantity, by the 7th day of the experiment, while 1 mM NaNO2, 1 and 10 mM KNO2 solutions did not cause a statistically significant change in the number of mollusks throughout the entire experiment. The action of sodium nitrite (1 mM) is associated with a decrease in the respiratory act duration and an increase in the speed of locomotion, but does not affect the frequency and total duration of lung respiration. The effects of potassium nitrite (1 mM) are reduced to a decrease in the duration of the respiratory act and total lung respiration, but do not affect the respiratory rate and locomotion. In the control group, the above indicators did not undergo statistically significant fluctuations over the course of the experiment. It is assumed that the cationic component of the salt, primarily potassium, is capable of modifying the action of its anionic component (nitrite anion or its derivative nitrogen monoxide), and the effects of cations (Na and K) should be considered as the main ones in the prolonged action of mentioned above compounds.
About the authors
M. H.D Alshahrani
Belarusian State University; College of Applied Science TechnologyMinsk, Belarus; Al Awata, Tripoli, Libya
A. V Sidorov
Belarusian State University
Email: sidorov@bsu.by
Minsk, Belarus
References
- Дьяконова Т.Л., Реутов В.П. 1998. Влияние нитрита на возбудимость нейронов мозга виноградной улитки // Росс. физиол. журн. им. И.М. Сеченова. Т. 84(11). С. 1264.
- Зотин А.А. 2009а. Рост и энергетический обмен Lymnaea stagnalis (Lymnaeidae, Gastropoda). 1. Ранний постличиночный период // Изв. РАН. Сер. биол. № 5. С. 543.
- Зотин А.А. 2009б. Индивидуальный рост Lymnaea stagnalis (Lymnaeidae, Gastropoda): II. Поздний постличиночный онтогенез // Изв. РАН. Сер. биол. № 6. С. 695.
- Михайлов Р.А., Нестеров В.Н., Рахуба А.В. 2024. Липидный профиль моллюсков Lymnaea stagnalis (Mollusca: Gastropoda) в озерах с разной степенью антропогенного загрязнения // Биология внутр. вод. Т. 17. № 2. C. 256. https://doi.org/10.31857/S0320965224020049
- Реутов В.П., Сорокина Е.Г. 1998. NО-синтазная и нитритредуктазная компоненты цикла оксида азота // Биохимия. Т. 63(7). С. 1029.
- Сидоров А.В. 2003. Влияние температуры на легочное дыхание, оборонительные реакции и локомоторное поведение пресноводного легочного моллюска Lymnaea stagnalis // Журн. высш. нерв. деят. им. И.П. Павлова. Т. 53. № 4. C. 513.
- Шахрани М., Сидоров А.В. 2017. Легочное дыхание и мышечная локомоция Lymnaea stagnalis при действии нитритов натрия и калия в условиях хронического закисления среды обитания // Новости мед.-биол. наук (News of Biomed. Sci). Т. 15(1). C. 5.
- Цыганов В.В., Воронцов Д.Д., Сахаров Д.А. 2004. Фазовая координация локомоции и дыхания у моллюска Lymnaea. Трансмиттерспецифические модификации // Докл. Академии наук. Т. 395(2). С. 274.
- Alonso A., Camargo J.A. 2006. Toxicity of nitrite to three species of freshwater invertebrates // Environ. Toxicol. V. 21(1). P. 90. https://doi.org/10.1002/tox.20155
- Alonso A., Camargo J.A. 2008. Ameliorating effect of chloride on nitrite toxicity to freshwater invertebrates with different physiology: a comparative study between amphipods and planarians // Arch. Environ. Contam. Toxicol. V. 54(2). P. 259. https://doi.org/10.1007/s00244-007-9034-0.
- Amorim J., Abreu I., Rodrigues P. et al. 2019. Lymnaea stagnalis as a freshwater model invertebrate for ecotoxicological studies // Sci. Total Environ. V. 669. P. 11. https://doi.org/10.1016/j.scitotenv.2019.03.035
- Benjamin P.R., Winlow W. 1981. The distribution of three wide-acting synaptic inputs to identified neurones in the isolated brain of Lymnaea stagnalis (L.) // Comp. Biochem. Physiol. V. 70A. P. 293. https://doi.org/10.1016/0300-9629(81)90182-1
- Camargo J.A., Alonso A. 2006. Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: a global assessment // Environ. Int. V. 32(6). P. 831. https://doi.org/10.1016/j.envint.2006.05.002
- Camargo J.A., Alonso A., Salamanca A. 2005. Nitrate toxicity to aquatic animals: a review with new data for freshwater invertebrates // Chemosphere. V. 58(9). P. 1255. https://doi.org/10.1016/j.chemosphere.2004.10.044
- Cruz L., Moroz L.L., Gillette R., Sweedler J.V. 1997. Nitrite and nitrate levels in individual molluscan neurons: singlecell capillary electrophoresis analysis // J. Neurochem. V. 69(1). P. 110. https://doi.org/10.1046/j.1471-4159.1997.69010110.x
- Daam M.A., Ilha P., Schiesari L. 2020. Acute toxicity of inorganic nitrogen (ammonium, nitrate and nitrite) to tadpoles of five tropical amphibian species // Ecotoxicology. V. 29(9). P. 1516. https://doi.org/10.1007/s10646-020-02247-8
- Follett R.F., Hatfield J.L. 2001. Nitrogen in the environment: sources, problems, and management // Scientific World J. V. 1 (Suppl. 2). P. 920. https://doi.org/10.1100/tsw.2001.269
- Garcia-Jaramillo M., Beaver L.M., Truong L. et al. 2020. Nitrate and nitrite exposure leads to mild anxiogeniclike behavior and alters brain metabolomic profile in zebrafish // PLoS ONE. V. 15(12). P. e0240070. https://doi.org/10.1371/journal.pone.0240070
- Guidelines for drinking-water quality: fourth edition incorporating the first and second addenda. 2022. Geneva: World Health Organization. Licence: CC BY-NC-SA 3.0 IGO. P. 438.
- Hermann P.M., Bulloch A.G. 1998. Developmental plasticity of respiratory behavior in Lymnaea // Behav. Neurosci. V. 112(3). P. 656. https://doi.org/10.1037//0735-7044.112.3.656
- Hubendick B. 1951. Recent Lymnaeidae: their variation, morphology, taxonomy, nomenclature, and distribution. Kungl. Svenska vetenskaps-akademiens handlingar. Ser. 4. (Bd 3, no. 1). Almqvist & Wiksell. p. 222.
- Jalili D., RadFard M., Soleimani H. et al. 2018. Data on Nitrate-Nitrite pollution in the groundwater resources a Sonqor plain in Iran // Data Brief. V. 20. P. 394. https://doi.org/10.1016/j.dib.2018.08.023
- Jensen F.B. 2009. The role of nitrite in nitric oxide homeostasis: a comparative perspective // Biochim. Biophys. Acta. V. 1787(7). P. 841. https://doi.org/10.1016/j.bbabio.2009.02.010
- Jensen F.B., Rohde S. 2010. Comparative analysis of nitrite uptake and hemoglobin-nitrite reactions in erythrocytes: sorting out uptake mechanisms and oxygenation dependencies // Am. J. Physiol. Regul. Integr. Comp. Physiol. V. 298(4). P. R972. https://doi.org/10.1152/ajpregu.00813.2009
- Kaviraj M., Kumar U., Snigdha A., Chatterjee S. 2024. Nitrate reduction to ammonium: a phylogenetic, physiological, and genetic aspects in Prokaryotes and eukaryotes // Arch. Microbiol. V. 206(7). P. 297. https://doi.org/10.1007/s00203-024-04009-0
- Kobayashi S., Sadamoto H., Ogawa H. et al. 2000. Nitric oxide generation around buccal ganglia accompanying feeding behavior in the pond snail, Lymnaea stagnalis // Neurosci. Res. V. 38(1). P. 27. https://doi.org/10.1016/s0168-0102(00)00136-x
- Kodirov S.A. 2011. The neuronal control of cardiac functions in Molluscs // Comp. Biochem. Physiol. A Mol. Integr. Physiol. V. 160(2). P. 102. https://doi.org/10.1016/j.cbpa.2011.06.014
- Lundberg J.O., Weitzberg E. 2022. Nitric oxide signaling in health and disease // Cell. V. 185. P. 2853. https://doi.org/10.1016/j.cell.2022.06.010
- May J.M., Qu Z.-C.,Xia L., Cobb C.E. 2000. Nitrite uptake and metabolism and oxidant stress in human erythrocytes // Am. J. Physiol. Cell Physiol. V. 279(6). P. C1946. https://doi.org/10.1152/ajpcell.2000.279.6.C1946
- Moroz L.L., Gillette R. 1995. From Polyplacophora to Cephalopoda: comparative analysis of nitric oxide signaling in Mollusca // Acta Biol. Hung. V. 46(2–4). P. 169.
- Nitrate and nitrite in drinking-water. 1998. Guidelines for drinking-water quality. Addendum to V. 2. Health criteria and other supporting information. Geneva: Addendum World Health Organization. 294 p. WHO reference number: WHO/EOS/98.1
- Palumbo A. 2005. Nitric oxide in marine invertebrates: a comparative perspective // Comp. Biochem. Physiol. A Mol. Integr. Physiol. V. 142(2). P. 241. https://doi.org/10.1016/j.cbpb.2005.05.043
- Rabalais N.N. 2002. Nitrogen in Aquatic Ecosystems // Ambio. V. 31(2). P. 102. https://doi.org/10.1579/0044-7447-31.2.102
- Rivi V., Benatti C., Colliva C. et al. 2020. Lymnaea stagnalis as model for translational neuroscience research: from pond to bench // Neurosci. Biobehav. Rev. V. 108. P. 602. https://doi.org/10.1016/j.neubiorev.2019.11.020
- Sidorov A.V. 2006. Coordination of locomotor activity of mollusc Lymnaea stagnalis at nutrition: role of the internal medium acid-base balance (pH) // J. Evol. Biochem. Physiol. V. 42(1). P. 43. https://doi.org/10.1134/S0022093006010066
- Sidorov A.V., Maslova G.T. 2008. State of antioxidative protection in central nervous ganglia of the mollusc Lymnaea stagnalis at modulation of activity of the NO-ergic system // J. Evol. Biochem. Physiol. V. 44(5). P. 535. https://doi.org/10.1134/S0022093008050010
- Soucek D.J., Dickinson A. 2012. Acute toxicity of nitrate and nitrite to sensitive freshwater insects, mollusks, and a crustacean // Arch. Environ. Contam. Toxicol. V. 62(2). P. 233. https://doi.org/10.1007/s00244-011-9705-8
- Su Z., Liu T., Guo J., Zheng M. 2023. Nitrite oxidation in wastewater treatment: microbial adaptation and suppression challenges // Environ. Sci. Technol. V. 57(34). P. 12557. https://doi.org/10.1021/acs.est.3c00636
- Tahon J.P., Maes G., Vinckier C. et al. 1990. The reaction of nitrite with the haemocyanin of the Roman snail (Helix pomatia) // Biochem. J. V. 271(3). P. 779. https://doi.org/10.1042/bj2710779
- Tascedda F., Malagoli D., Accorsi A. et al. 2015. Molluscs as models for translational medicine // Med. Sci. Monit. Basic Res. V. 21. P. 96. https://doi.org/10.12659/MSMBR.894221
- Van Drecht G., Bouwman A.F., Knoop J.M. et al. 2001. Global pollution of surface waters from point and nonpoint sources of nitrogen // Scientific World J. V. 1 (Suppl. 2). P. 632. https://doi.org/10.1100/tsw.2001.326
- Vitousek P.M., Aber J.D., Howarth R.W. et al. 1997. Human alteration of the global nitrogen cycle: sources and consequences // Ecol. Appl. V. 7(3). P. 737. https://doi.org/10.1890/1051-0761(1997)007[0737:HAOTGN]2.0.CO;2
- Wang N., Ingersoll C.G., Greer I.E. et al. 2007. Chronic toxicity of copper and ammonia to juvenile freshwater mussels (Unionidae) // Environ. Toxicol. Chem. V. 26(10). P. 2048. https://doi.org/10.1897/06-524R.1
- Weitzberg E., Lundberg J.O.N. 1998. Nonenzymatic nitric oxide production in humans // Nitric Oxide. V. 2(1). P. 1. https://doi.org/10.1006/niox.1997.0162
- Zhang L., Xia T., Liu Q. et al. 2023. Performance of Daphnia simultaneously exposed to nitrite and predation risk: reduced nitrite tolerance and aggravated predationinduced miniaturization // Sci. Total Environ. V. 859 (Pt. 2). P. 160271. https://doi.org/10.1016/j.scitotenv.2022.160271
Supplementary files


