Effect of Sodium and Potassium Nitrites on Lung Respiration and Locomotion of the Mollusk Lymnaea stagnalis (Lymnaeidae, Gastropoda)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Behavioral reactions of the fresh-water pond snail (Lymnaea stagnalis) were studied under prolonged action of 1 and 10 mM sodium and potassium nitrite solutions. It was found that 10 mM sodium nitrite solution leads to the one third of the animal's death, from their initial quantity, by the 7th day of the experiment, while 1 mM NaNO2, 1 and 10 mM KNO2 solutions did not cause a statistically significant change in the number of mollusks throughout the entire experiment. The action of sodium nitrite (1 mM) is associated with a decrease in the respiratory act duration and an increase in the speed of locomotion, but does not affect the frequency and total duration of lung respiration. The effects of potassium nitrite (1 mM) are reduced to a decrease in the duration of the respiratory act and total lung respiration, but do not affect the respiratory rate and locomotion. In the control group, the above indicators did not undergo statistically significant fluctuations over the course of the experiment. It is assumed that the cationic component of the salt, primarily potassium, is capable of modifying the action of its anionic component (nitrite anion or its derivative nitrogen monoxide), and the effects of cations (Na and K) should be considered as the main ones in the prolonged action of mentioned above compounds.

About the authors

M. H.D Alshahrani

Belarusian State University; College of Applied Science Technology

Minsk, Belarus; Al Awata, Tripoli, Libya

A. V Sidorov

Belarusian State University

Email: sidorov@bsu.by
Minsk, Belarus

References

  1. Дьяконова Т.Л., Реутов В.П. 1998. Влияние нитрита на возбудимость нейронов мозга виноградной улитки // Росс. физиол. журн. им. И.М. Сеченова. Т. 84(11). С. 1264.
  2. Зотин А.А. 2009а. Рост и энергетический обмен Lymnaea stagnalis (Lymnaeidae, Gastropoda). 1. Ранний постличиночный период // Изв. РАН. Сер. биол. № 5. С. 543.
  3. Зотин А.А. 2009б. Индивидуальный рост Lymnaea stagnalis (Lymnaeidae, Gastropoda): II. Поздний постличиночный онтогенез // Изв. РАН. Сер. биол. № 6. С. 695.
  4. Михайлов Р.А., Нестеров В.Н., Рахуба А.В. 2024. Липидный профиль моллюсков Lymnaea stagnalis (Mollusca: Gastropoda) в озерах с разной степенью антропогенного загрязнения // Биология внутр. вод. Т. 17. № 2. C. 256. https://doi.org/10.31857/S0320965224020049
  5. Реутов В.П., Сорокина Е.Г. 1998. NО-синтазная и нитритредуктазная компоненты цикла оксида азота // Биохимия. Т. 63(7). С. 1029.
  6. Сидоров А.В. 2003. Влияние температуры на легочное дыхание, оборонительные реакции и локомоторное поведение пресноводного легочного моллюска Lymnaea stagnalis // Журн. высш. нерв. деят. им. И.П. Павлова. Т. 53. № 4. C. 513.
  7. Шахрани М., Сидоров А.В. 2017. Легочное дыхание и мышечная локомоция Lymnaea stagnalis при действии нитритов натрия и калия в условиях хронического закисления среды обитания // Новости мед.-биол. наук (News of Biomed. Sci). Т. 15(1). C. 5.
  8. Цыганов В.В., Воронцов Д.Д., Сахаров Д.А. 2004. Фазовая координация локомоции и дыхания у моллюска Lymnaea. Трансмиттерспецифические модификации // Докл. Академии наук. Т. 395(2). С. 274.
  9. Alonso A., Camargo J.A. 2006. Toxicity of nitrite to three species of freshwater invertebrates // Environ. Toxicol. V. 21(1). P. 90. https://doi.org/10.1002/tox.20155
  10. Alonso A., Camargo J.A. 2008. Ameliorating effect of chloride on nitrite toxicity to freshwater invertebrates with different physiology: a comparative study between amphipods and planarians // Arch. Environ. Contam. Toxicol. V. 54(2). P. 259. https://doi.org/10.1007/s00244-007-9034-0.
  11. Amorim J., Abreu I., Rodrigues P. et al. 2019. Lymnaea stagnalis as a freshwater model invertebrate for ecotoxicological studies // Sci. Total Environ. V. 669. P. 11. https://doi.org/10.1016/j.scitotenv.2019.03.035
  12. Benjamin P.R., Winlow W. 1981. The distribution of three wide-acting synaptic inputs to identified neurones in the isolated brain of Lymnaea stagnalis (L.) // Comp. Biochem. Physiol. V. 70A. P. 293. https://doi.org/10.1016/0300-9629(81)90182-1
  13. Camargo J.A., Alonso A. 2006. Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: a global assessment // Environ. Int. V. 32(6). P. 831. https://doi.org/10.1016/j.envint.2006.05.002
  14. Camargo J.A., Alonso A., Salamanca A. 2005. Nitrate toxicity to aquatic animals: a review with new data for freshwater invertebrates // Chemosphere. V. 58(9). P. 1255. https://doi.org/10.1016/j.chemosphere.2004.10.044
  15. Cruz L., Moroz L.L., Gillette R., Sweedler J.V. 1997. Nitrite and nitrate levels in individual molluscan neurons: singlecell capillary electrophoresis analysis // J. Neurochem. V. 69(1). P. 110. https://doi.org/10.1046/j.1471-4159.1997.69010110.x
  16. Daam M.A., Ilha P., Schiesari L. 2020. Acute toxicity of inorganic nitrogen (ammonium, nitrate and nitrite) to tadpoles of five tropical amphibian species // Ecotoxicology. V. 29(9). P. 1516. https://doi.org/10.1007/s10646-020-02247-8
  17. Follett R.F., Hatfield J.L. 2001. Nitrogen in the environment: sources, problems, and management // Scientific World J. V. 1 (Suppl. 2). P. 920. https://doi.org/10.1100/tsw.2001.269
  18. Garcia-Jaramillo M., Beaver L.M., Truong L. et al. 2020. Nitrate and nitrite exposure leads to mild anxiogeniclike behavior and alters brain metabolomic profile in zebrafish // PLoS ONE. V. 15(12). P. e0240070. https://doi.org/10.1371/journal.pone.0240070
  19. Guidelines for drinking-water quality: fourth edition incorporating the first and second addenda. 2022. Geneva: World Health Organization. Licence: CC BY-NC-SA 3.0 IGO. P. 438.
  20. Hermann P.M., Bulloch A.G. 1998. Developmental plasticity of respiratory behavior in Lymnaea // Behav. Neurosci. V. 112(3). P. 656. https://doi.org/10.1037//0735-7044.112.3.656
  21. Hubendick B. 1951. Recent Lymnaeidae: their variation, morphology, taxonomy, nomenclature, and distribution. Kungl. Svenska vetenskaps-akademiens handlingar. Ser. 4. (Bd 3, no. 1). Almqvist & Wiksell. p. 222.
  22. Jalili D., RadFard M., Soleimani H. et al. 2018. Data on Nitrate-Nitrite pollution in the groundwater resources a Sonqor plain in Iran // Data Brief. V. 20. P. 394. https://doi.org/10.1016/j.dib.2018.08.023
  23. Jensen F.B. 2009. The role of nitrite in nitric oxide homeostasis: a comparative perspective // Biochim. Biophys. Acta. V. 1787(7). P. 841. https://doi.org/10.1016/j.bbabio.2009.02.010
  24. Jensen F.B., Rohde S. 2010. Comparative analysis of nitrite uptake and hemoglobin-nitrite reactions in erythrocytes: sorting out uptake mechanisms and oxygenation dependencies // Am. J. Physiol. Regul. Integr. Comp. Physiol. V. 298(4). P. R972. https://doi.org/10.1152/ajpregu.00813.2009
  25. Kaviraj M., Kumar U., Snigdha A., Chatterjee S. 2024. Nitrate reduction to ammonium: a phylogenetic, physiological, and genetic aspects in Prokaryotes and eukaryotes // Arch. Microbiol. V. 206(7). P. 297. https://doi.org/10.1007/s00203-024-04009-0
  26. Kobayashi S., Sadamoto H., Ogawa H. et al. 2000. Nitric oxide generation around buccal ganglia accompanying feeding behavior in the pond snail, Lymnaea stagnalis // Neurosci. Res. V. 38(1). P. 27. https://doi.org/10.1016/s0168-0102(00)00136-x
  27. Kodirov S.A. 2011. The neuronal control of cardiac functions in Molluscs // Comp. Biochem. Physiol. A Mol. Integr. Physiol. V. 160(2). P. 102. https://doi.org/10.1016/j.cbpa.2011.06.014
  28. Lundberg J.O., Weitzberg E. 2022. Nitric oxide signaling in health and disease // Cell. V. 185. P. 2853. https://doi.org/10.1016/j.cell.2022.06.010
  29. May J.M., Qu Z.-C.,Xia L., Cobb C.E. 2000. Nitrite uptake and metabolism and oxidant stress in human erythrocytes // Am. J. Physiol. Cell Physiol. V. 279(6). P. C1946. https://doi.org/10.1152/ajpcell.2000.279.6.C1946
  30. Moroz L.L., Gillette R. 1995. From Polyplacophora to Cephalopoda: comparative analysis of nitric oxide signaling in Mollusca // Acta Biol. Hung. V. 46(2–4). P. 169.
  31. Nitrate and nitrite in drinking-water. 1998. Guidelines for drinking-water quality. Addendum to V. 2. Health criteria and other supporting information. Geneva: Addendum World Health Organization. 294 p. WHO reference number: WHO/EOS/98.1
  32. Palumbo A. 2005. Nitric oxide in marine invertebrates: a comparative perspective // Comp. Biochem. Physiol. A Mol. Integr. Physiol. V. 142(2). P. 241. https://doi.org/10.1016/j.cbpb.2005.05.043
  33. Rabalais N.N. 2002. Nitrogen in Aquatic Ecosystems // Ambio. V. 31(2). P. 102. https://doi.org/10.1579/0044-7447-31.2.102
  34. Rivi V., Benatti C., Colliva C. et al. 2020. Lymnaea stagnalis as model for translational neuroscience research: from pond to bench // Neurosci. Biobehav. Rev. V. 108. P. 602. https://doi.org/10.1016/j.neubiorev.2019.11.020
  35. Sidorov A.V. 2006. Coordination of locomotor activity of mollusc Lymnaea stagnalis at nutrition: role of the internal medium acid-base balance (pH) // J. Evol. Biochem. Physiol. V. 42(1). P. 43. https://doi.org/10.1134/S0022093006010066
  36. Sidorov A.V., Maslova G.T. 2008. State of antioxidative protection in central nervous ganglia of the mollusc Lymnaea stagnalis at modulation of activity of the NO-ergic system // J. Evol. Biochem. Physiol. V. 44(5). P. 535. https://doi.org/10.1134/S0022093008050010
  37. Soucek D.J., Dickinson A. 2012. Acute toxicity of nitrate and nitrite to sensitive freshwater insects, mollusks, and a crustacean // Arch. Environ. Contam. Toxicol. V. 62(2). P. 233. https://doi.org/10.1007/s00244-011-9705-8
  38. Su Z., Liu T., Guo J., Zheng M. 2023. Nitrite oxidation in wastewater treatment: microbial adaptation and suppression challenges // Environ. Sci. Technol. V. 57(34). P. 12557. https://doi.org/10.1021/acs.est.3c00636
  39. Tahon J.P., Maes G., Vinckier C. et al. 1990. The reaction of nitrite with the haemocyanin of the Roman snail (Helix pomatia) // Biochem. J. V. 271(3). P. 779. https://doi.org/10.1042/bj2710779
  40. Tascedda F., Malagoli D., Accorsi A. et al. 2015. Molluscs as models for translational medicine // Med. Sci. Monit. Basic Res. V. 21. P. 96. https://doi.org/10.12659/MSMBR.894221
  41. Van Drecht G., Bouwman A.F., Knoop J.M. et al. 2001. Global pollution of surface waters from point and nonpoint sources of nitrogen // Scientific World J. V. 1 (Suppl. 2). P. 632. https://doi.org/10.1100/tsw.2001.326
  42. Vitousek P.M., Aber J.D., Howarth R.W. et al. 1997. Human alteration of the global nitrogen cycle: sources and consequences // Ecol. Appl. V. 7(3). P. 737. https://doi.org/10.1890/1051-0761(1997)007[0737:HAOTGN]2.0.CO;2
  43. Wang N., Ingersoll C.G., Greer I.E. et al. 2007. Chronic toxicity of copper and ammonia to juvenile freshwater mussels (Unionidae) // Environ. Toxicol. Chem. V. 26(10). P. 2048. https://doi.org/10.1897/06-524R.1
  44. Weitzberg E., Lundberg J.O.N. 1998. Nonenzymatic nitric oxide production in humans // Nitric Oxide. V. 2(1). P. 1. https://doi.org/10.1006/niox.1997.0162
  45. Zhang L., Xia T., Liu Q. et al. 2023. Performance of Daphnia simultaneously exposed to nitrite and predation risk: reduced nitrite tolerance and aggravated predationinduced miniaturization // Sci. Total Environ. V. 859 (Pt. 2). P. 160271. https://doi.org/10.1016/j.scitotenv.2022.160271

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).