The Influence of Nutritional Spectra on the Fatty Acid Composition of Muscle Tissue and on Omega-3 PUFA Content in the Brain, Muscle and Adipose Tissues of Fish of the Genus Thymallus.
- Authors: Mashonskaya Y.O.1, Zuev I.V.1, Andrushchenko P.Y.1,2, Glushchenko L.A.1, Mikheev P.B.3,4, Makhutova O.N.5
-
Affiliations:
- Siberian Federal University
- Institute of Biophysics of Federal Research Center “Krasnoyarsk Science Center” of Siberian Branch of Russian Academy of Sciences
- Perm State University
- Khabarovsk branch of the Federal State Budget Scientific Institution “Russian Federal Research Institute of Fisheries and oceanography”
- National Scientific Center for Marine Biology named after. A.V. Zhirmunsky (NSCMB) Far Eastern Branch, Russian Academy of Sciences
- Issue: Vol 18, No 2 (2025)
- Pages: 367-380
- Section: ЭКОЛОГИЧЕСКАЯ ФИЗИОЛОГИЯ И БИОХИМИЯ ГИДРОБИОНТОВ
- URL: https://journals.rcsi.science/0320-9652/article/view/306817
- DOI: https://doi.org/10.31857/S0320965225020125
- EDN: https://elibrary.ru/auofai
- ID: 306817
Cite item
Abstract
About the authors
Y. O. Mashonskaya
Siberian Federal University
Email: yulama5@mail.ru
Krasnoyarsk, Russia
I. V. Zuev
Siberian Federal UniversityKrasnoyarsk, Russia
P. Y. Andrushchenko
Siberian Federal University; Institute of Biophysics of Federal Research Center “Krasnoyarsk Science Center” of Siberian Branch of Russian Academy of SciencesKrasnoyarsk, Russia; Akademgorodok, Krasnoyarsk, Russia
L. A. Glushchenko
Siberian Federal UniversityKrasnoyarsk, Russia
P. B. Mikheev
Perm State University; Khabarovsk branch of the Federal State Budget Scientific Institution “Russian Federal Research Institute of Fisheries and oceanography”Perm, Russia; Khabarovsk, Russia
O. N. Makhutova
National Scientific Center for Marine Biology named after. A.V. Zhirmunsky (NSCMB) Far Eastern Branch, Russian Academy of SciencesVladivostok, Russia
References
- Андрианова А.В. 2018. Структурная организация донной фауны в бассейне Енисея (верхнее и среднее течение) // Международный журнал прикладных и фундаментальных исследований. № 7. С. 140. https://doi.org/10.17513/mjpfi.12343
- Андрианова А.В. 2021. Оценка экологического состояния рек бассейна Енисея по организмам зообентоса // Енисейская Арктика. Красноярск: Федеральное государственное бюджетное образовательное учреждение высшего образования “Сибирский государственный университет науки и технологий имени академика М.Ф. Решетнева”. С. 82.
- Андрианова А.В. 2023. Донная фауна и оценка экологического состояния нижнего участка р. Ангары // Изв. Иркутск. гос. ун-та. Серия: Биология. Экология. Т. 43. С. 39. https://doi.org/10.26516/2073-3372.2023.43.39
- Гладышев М.И. 2012. Незаменимые полиненасыщенные жирные кислоты и их пищевые источники для человека // Журн. Сиб. фед. ун-та. Серия: Биология. Т. 5. № 4. С. 352. https://doi.org/10.17516/1997-1389-0128
- Заделенов В.А., Дубовская О.П., Бажина Л.В. и др. 2017. Новые сведения о биоте некоторых озер западной части плато Путорана // Журн. Сиб. фед. ун-та. Серия: Биология. Т. 10. № 1. С. 87.
- Зуев И.В., Семенова Е.М., Шулепина С.П. и др. 2011. Питание хариуса Tymallus sp. в среднем течении р. Енисей // Журнал Сибирского федерального университета. Серия: Биология. Т. 4. № 3. С. 281.
- Махутова О.Н., Гладышев М.И. 2020. Незаменимые полиненасыщенные жирные кислоты в физиологии и метаболизме рыб и человека: значение, потребности, источники // Рос. физиол. журн. им. И.М. Сеченова. Т. 106. № 5. С. 601. https://doi.org/10.31857/S0869813920050040
- Паньков Н.Н. 2004. Структурные и функциональные характеристики зообентоценозов р. Сылвы (бассейн Камы). Пермь: Изд-во Пермск. ун-та. С. 162.
- Паньков Н.Н. 2008. Зоофитос среднего течения реки Сылва // Вестн. Пермск. ун-та. Серия: Биология. № 9(25). С. 37.
- Ahlgren G., Carlstein M., Gustafsson I.-B. 1999. Effects of natural and commercial diets on the fatty acid content of European grayling // J. Fish Biol. V. 55. P. 1142. https://doi.org/10.1111/j.1095-8649.1999.tb02065.x
- Avramoviс M., Turek J., Tomčala A. et al. 2024. Assessing the acclimatisation to the wild of stocked European graylings Thymallus thymallus by monitoring lipid dynamics and food consumption // Knowl. Manage. Aquat. Ecosyst. V. 425. № 10. P. 11. https://doi.org/10.1051/kmae/2024008
- Christie W.W., Han X. 2010. Lipid analysis: isolation, separation, identification and lipidomic analysis. Oily Press Lipid Library Series. Elsevier. P. 448.
- Colombo S.M., Budge S.M., Hall J.R. et al. 2023. Atlantic salmon adapt to low dietary n-3 PUFA and warmer water temperatures by increasing feed intake and expression of n-3 biosynthesis-related transcripts // Fish Physiol. and Biochem. V. 49. Р. 39. https://doi.org/10.1007/s10695-022-01157-2
- Dvoretsky A.G., Dvoretsky V.G., Bichkaeva F.A. et al. 2022. Fatty acid content of four salmonid fish consumed by indigenous peoples from the Yamal-Nenets autonomous okrug (Northwestern Siberia, Russia) // Animals. V. 12. № 13. https://doi.org/10.3390/ani12131643
- Fontaneto D., Tommaseo-Ponzetta M., Gall C. et al. 2011. Differences in fatty acid composition between aquatic and terrestrial insects used as food in human nutrition // Ecology of Food and Nutrition. V. 50. № 4. P. 351. https://doi.org/10.1080/03670244.2011.586316
- Gladyshev M.I., Makhrov A.A., Baydarov I.V. et al. 2022. Fatty Acid Composition and Contents of Fish of Genus Salvelinus from Natural Ecosystems and Aquaculture // Biomolecules. V. 12. № 1. P. 144. https://doi.org/10.3390/biom12010144
- Gladyshev M.I., Sushchik N.N., Glushchenko L.A. et al. 2017. Fatty Acid Composition of Fish Species with Different Feeding Habits from an Arctic Lake // Doklady Biochemistry and Biophysics. V. 474. P. 220. https://doi.org/10.1134/S1607672917030164
- Gladyshev M.I., Sushchik N.N., Kravchuk E.S. et al. 2005. Seasonal Changes in the Standing Stock of Essential Polyunsaturated Fatty Acids in the Biomass of Phyto- and Zoobenthos on a Littoral Station of the Yenisei River // Doklady Biochemistry and Biophysics. V. 403. P. 267. https://doi.org/10.1007/s10630-005-0107-9
- Gladyshev M.I., Sushchik N.N., Makhutova O.N. 2013. Production of EPA and DHA in aquatic ecosystems and their transfer to the land // Prostaglandins & Other Lipid Mediators. V. 107. P. 117. https://doi.org/10.1016/j.prostaglandins.2013.03.002
- Gladyshev M.I., Sushchik N.N., Tolomeev A.P., Dgebuadze Y.Y. 2018. Meta-analysis of factors associated with omega-3 fatty acid contents of wild fish // Rev. Fish Biol. and Fish. V. 28. P. 277. https://doi.org/10.1007/s11160-017-9511-0
- Grive A., Lau D.C.P. 2018. Do autochthonous resources enhance trophic transfer of allochthonous organic matter to aquatic consumers, or vice versa? // Ecosphere. V. 9. № 6. https://doi.org/10.1002/ecs2.2307
- Grunicke F., Wagner A., von Elert E. et al. 2023. Riparian detritus vs. stream detritus: food quality determines fitness of juveniles of the highly endangered freshwater pearl mussels (Margaritifera margaritifera) // Hydrobiologia. V. 850. P. 729. https://doi.org/10.1007/s10750-022-05120-3
- Hielscher N.N., Malzahn A.M., Diekmann R., Aberle N. 2015. Trophic niche partitioning of littoral fish species from the rocky intertidal of Helgoland // Helgoland Marine Research. V. 69. P. 385. https://doi.org/10.1007/s10152-015-0444-5
- Hixson S.M., Sharma B., Kain M.J. et al. 2015. Production, distribution, and abundance of long-chain omega-3 polyunsaturated fatty acids: a fundamental dichotomy between freshwater and terrestrial ecosystems // Environ. Rev. V. 23. Is. 4. P. 414. https://doi.org/10.1139/er-2015-0029
- Infante J.P., Kirwan R.C., Brenna J.T. 2001. High levels of docosahexaenoic acid (22:6n-3) – containing phospholipids in high-frequency contraction muscles of hummingbirds and rattlesnakes // Comp. Biochem. and Physiol. Part B: Biochem. and Mol. Biol. V. 130. Is. 3. P. 291. https://doi.org/10.1016/s1096-4959(01)00443-2
- Iverson S.J. 2009. Tracing aquatic food webs using fatty acids: from qualitative indicators to quantitative determination // Lipids in Aquatic Ecosystems. N.Y.: Springer. https://doi.org/10.1007/978-0-387-89366-2_12
- Kidd P.M. 2007. Omega-3 DHA and EPA for cognition, behavior, and mood: clinical findings and structural-functional synergies with cell membrane phospholipids // Altern. Med. Rev. V. 12. № 3. P. 207.
- Lands W.E. 2009. Human life: Caught in the food web // Lipids in Aquatic Ecosystems. N.Y.: Springer. https://doi.org/10.1007/978-0-387-89366-2_14
- Lau D.C.P., Vrede T., Pickova J., Goedkoop W. 2012. Fatty acid composition of consumers in boreal lakes-variation across species, space and time // Freshwater Biol. V. 57. № 1. P. 24. https://doi.org/10.1111/j.1365-2427.2011.02690.x
- Levin B., Simonov E., Franchini P. et al. 2021. Rapid adaptive radiation in a hillstream cyprinid fish in the East African White Nile River basin // Mol. Ecol. V. 30. № 21. P. 5530. https://doi.org/10.1111/mec.16130
- Makhutova O.N., Shulepina S.P., Sharapova T.A. et al. 2016. Content of polyunsaturated fatty acids essential for fish nutrition in zoobenthos species // Freshwater Sci. V. 35. № 4. P. 1222. https://doi.org/10.1086/688760
- Makhutova O.N., Shulepina S.P., Sharapova T.A. et al. 2018. Intraspecies variability of fatty acid content and composition of a cosmopolitan benthic invertebrate, Gammarus lacustris // Inland Waters. V. 8. № 3. P. 356. https://doi.org/10.1080/20442041.2018.1487157
- Makhutova O.N., Stoyanov K.N. 2021. Fatty acid content and composition in tissues of Baikal grayling (Thymallus baicalensis), with a special focus on DHA synthesis // Aquacul. Int. V. 29. P. 2415. https://doi.org/10.1007/s10499-021-00755-w
- Makhutova O.N., Sushchik N.N., Gladyshev M.I. 2022. Fatty acid-markers as food web tracers in inland waters // Encyclopedia of Inland Waters. Publisher: Elsevier. V. 4. P. 713. https://doi.org/10.1016/B978-0-12-819166-8.00094-3
- Monroig Ó., Shu-Chien A.C., Kabeya N., Castro L.F.C. 2022. Desaturases and elongases involved in long-chain polyunsaturated fatty acid biosynthesis in aquatic animals: From genes to functions // Progress in Lipid Research. V. 86. https://doi.org/10.1016/j.plipres.2022.101157
- Petrov K.A., Dudareva L.V., Nokhsorov V.V. et al. 2020. Fatty acid content and composition of the yakutian horses and their main food source: living in extreme winter conditions // Biomolecules. V. 10. № 2. 315. https://doi.org/10.3390/biom10020315
- Rahimnejad S., Dabrowski K., Izquierdo M. et al. 2021. Effects of dietary protein and lipid levels on growth, body composition, blood biochemistry, antioxidant capacity and ammonia excretion of European Grayling (Thymallus thymallus) // Frontiers Mar. Sci. V. 8. https://doi.org/10.3389/fmars.2021.715636
- Renaville B., Tulli F., Bruno M. et al. 2013. Fatty acid desaturase 2 (FADS2) insertion/deletion polymorphism impact on muscle fatty acid profile in European grayling (Thymallus thymallus) // British J. Nutrition. V. 110. P. 1559. https://doi.org/10.1017/S0007114513001049
- Saç G. 2023. Diet and feeding ecology of the invasive Gambusia holbrooki (Teleostei: Poeciliidae) in lotic and lentic habitats (Northwestern Part of Turkey) // Inland Water Biol. V. 16. P. 330. https://doi.org/10.1134/S1995082923020086
- Sushchik N.N., Makhutova O.N., Rudchenko A.E. et al. 2020. Comparison of fatty acid contents in major lipid classes of seven salmonid species from Siberian Arctic lakes // Biomolecules. V. 10. Is. 3. P. 419. https://doi.org/10.3390/biom10030419
- Torres-Ruiz M., Wehr J.D. 2010. Changes in the nutritional quality of decaying leaf litter in a stream based on fatty acid content // Hydrobiologia. V. 651. P. 265. https://doi.org/10.1007/s10750-010-0305-9
- Vasconi M., Caprino F., Bellagamba F. et al. 2015. Fatty Acid Composition of Freshwater Wild Fish in Subalpine Lakes: A Comparative Study // Lipids. V. 50. № 3. P. 283. https://doi.org/10.1007/s11745-014-3978-4
- Wall R., Ross R., Fitzgerald G., Stanton C. 2010. Fatty acids from fish: the anti-inflammatory potential of long-chain omega-3 fatty acids // Nutrition Res. V. 68. № 5. P. 280. https://doi.org/10.1111/j.1753-4887.2010.00287.x
- Weiser M.J., Butt C.M., Mohajeri M.H. 2016. Docosahexaenoic acid and cognition throughout the lifespan // Nutrients. V. 8. № 2. Р. 99. https://doi.org/10.3390/nu8020099
- Wijekoon M.P.A., Parrish C.C., Mansour A. 2014. Effect of dietary substitution of fish oil with flaxseed or sunflower oil on muscle fatty acid composition in juvenile steelhead trout (Oncorhynchus mykiss) reared at varying temperatures // Aquaculture. V. 433. P. 74. https://doi.org/10.1016/j.aquaculture.2014.05.028
Supplementary files
