Two New Species of the Genus Cryptomonas (Cryptophyta: Cryptophyceae) from Cat Tien National Park (Vietnam)
- 作者: Martynenko N.A.1,2, Gusev E.S.1,2, Huan P.2
-
隶属关系:
- A.N. Severtsov Institute of Ecology and Evolution оf the Russian Academy of Sciences
- Coastal Branch of the Joint Vietnam-Russia Tropical Science and Technology Research Center
- 期: 卷 17, 编号 6 (2024)
- 页面: 885-896
- 栏目: БИОЛОГИЯ, МОРФОЛОГИЯ И СИСТЕМАТИКА ГИДРОБИОНТОВ
- URL: https://journals.rcsi.science/0320-9652/article/view/274233
- DOI: https://doi.org/10.31857/S0320965224060033
- EDN: https://elibrary.ru/WYWKUQ
- ID: 274233
如何引用文章
详细
In this paper, we describe two new species of the genus Cryptomonas from Cat Tien National Park (Vietnam): Cryptomonas pascheri and Cryptomonas playfairii, based on morphological characteristics and molecular analysis of the 18S, 28S, ITS2 rDNA and psb A cpDNA regions. The concept of compensatory base substitutions (CBCs) was also used for delimiting taxa. Both species are included in the same clade with C. lundii . If C. pascheri is morphologically similar to other species of the clade, then C. playfairii has obvious morphological differences. Each of the described species has clear molecular differences from related species in the C. lundii clade.
作者简介
N. Martynenko
A.N. Severtsov Institute of Ecology and Evolution оf the Russian Academy of Sciences; Coastal Branch of the Joint Vietnam-Russia Tropical Science and Technology Research Center
编辑信件的主要联系方式.
Email: nikita-martynenko@yandex.ru
俄罗斯联邦, Moscow; Nha Trang, Vietnam
E. Gusev
A.N. Severtsov Institute of Ecology and Evolution оf the Russian Academy of Sciences; Coastal Branch of the Joint Vietnam-Russia Tropical Science and Technology Research Center
Email: nikita-martynenko@yandex.ru
俄罗斯联邦, Moscow; Nha Trang, Vietnam
Phan Trong Huan
Coastal Branch of the Joint Vietnam-Russia Tropical Science and Technology Research Center
Email: nikita-martynenko@yandex.ru
越南, Nha Trang
参考
- Дещеревс кая О.А., Авилов В.К., Ба Зуй Динь и др. 2013. Современный климат национального парка Кат Тьен (южный Вьетнам): использование климатических данных для экологических исследований // Геофизические процессы и биосфера. Т. 12. № 2. С. 5.
- Киселев И.А. 1954. Пирофитовые водоросли // Определитель пресноводных водорослей СССР. Вып. 6.
- Кулизин П.В., Мартыненко Н.А., Гусев Е.С. и др. 2022. Новые для флоры России виды рода Cryptomonas (Cryptophyceae) // Биология внутр. вод. № 3. С. 222. h ttps://doi.org/10.31857/S032096522203010X
- Матвієнко О.М., Литвиненко Р.М. 1977. Пірофітові водорості – Pyrrophyta // Визначник прісноводних водоростей Української РСР. Т. 3. Ч. 2. Киев: Наук. думка.
- Хохлова О.С., Мякшина Т.Н., Кузнецов А.Н., Губин С.В. 2017. Морфогенетические особенности почв Национального парка Кат Тьен, Южный Вьетнам // Почвоведение. № 2. С. 176. https://doi.org/10.7868/S0032180X1612008X
- Akaike H. 1974. A new look at the statistical model identification // IEEE Trans. Autom. Control. V. 19(6). P. 716. h ttps://doi.org/10.1109/TAC.1974.1100705
- Altenburger A., Blossom H.E., Garcia-Cuetos L. et al. 2020. Dimorphism in cryptophytes – The case of Teleaulax amphioxeia / Plagioselmis prolonga and its ecological implications // Sci. Adv. V. 6(37). eabb1611. h ttps://doi.org/10.1126/sciadv.abb161
- Andersen R.A. 2005. Algal Culturing Techniques. Oxford: Elsevier Acad. Press.
- Blanc L., Maury-Lechon G., Pascal J.P. 2000. Structure, floristic composition and natural regeneration in the forests of Cat Tien National Park, Vietnam: an analysis of the successional trends // J. Biogeogr. V. 27(2). P. 141. h ttps://doi.org/10.1046/j.1365-2699.2000.00347.x
- Byun Y., Han K. 2006. PseudoViewer: web application and web service for visualizing RNA pseudoknots and secondary structures // Nucleic Acids Res. V. 34 (Suppl. 2). P. 416. h ttps://doi.org/10.1093/nar/gkl210
- Caisová L., Marin B., Melkonian M. 2013. A consensus secondary structure of ITS2 in the Chlorophyta identified by phylogenetic reconstruction // Protist. V. 164(4). P. 482. h ttps://doi.org/10.1016/j.protis.2013.04.005
- Choi B., Son M., Kim J.I., Shin W. 2013. Taxonomy and phylogeny of the genus Cryptomonas (Cryptophyceae, Cryptophyta) from Korea // Algae. V. 28(4). P. 307. https://doi.org/10.4490/algae.2013.28.4.307
- Clay B.L., Kugrens P., Lee R.E. 1999. A revised classification of the Cryptophyta // Bot. J. Linn. Soc. 131(2). P. 131. h ttps://doi.org/10.1111/j.1095-8339.1999.tb01845.x
- Coleman A.W. 2000. The significance of a coincidence between evolutionary landmarks found in mating affinity and a DNA sequence // Protist. V. 151(1). P. 1. h ttps://doi.org/10.1078/1434-4610-00002
- Coleman A.W. 2009. Is there a molecular key to the level of “biological species” in eukaryotes? A DNA guide // Mol. Phylogenet. Evol. V. 50(1). P. 197. h ttps://doi.org/10.1016/j.ympev.2008.10.008
- Douglas S.E., Murphy C.A., Spencer D.F., Gray M.W. 1991. Cryptomonad algae are evolutionary chimaeras of two phylogenetically distinct unicellular eukaryotes // Nature. № 350(6314). P. 148. h ttps://doi.org/10.1038/350148a0
- George E.E., Barcytė D., Lax G. et al. 2023. A single cryptomonad cell harbors a complex community of organelles, bacteria, a phage, and selfish elements // Curr. Biol. V. 33(10). P. 1982. h ttps://doi.org/10.1016/j.cub.2023.04.010
- Gillespie J.J., Johnston J.S., Cannone J.J., Gutell R.R. 2006. Characteristics of the nuclear (18S, 5.8 S, 28S and 5S) and mitochondrial (12S and 16S) rRNA genes of Apis mellifera (Insecta: Hymenoptera): structure, organization, and retrotransposable elements // Insect Mol. Biol. V. 15(5). P. 657. h ttps://doi.org/10.1111/j.1365-2583.2006.00689.x
- Guiry M.D., Guiry G.M. 2023. AlgaeBase. World-wide electronic publication. Galway: National University of Ireland. h ttps://www.algaebase.org ; дата обращения 27 ноября 2023 г.
- Gusev E.S., Doan N.H., Nguyen N.L. 2017. Silica-scaled chrysophytes from Cat Tien National Park (Dong Nai Province, Vietnam) // Nova Hedwigia. V. 105(3). P. 347. h ttps://doi.org/10.1127/nova_hedwigia/2017/0416
- Gusev E., Podunay Y., Martynenko N. et al. 2020. Taxonomic studies of Cryptomonas lundii clade (Cryptophyta: Cryptophyceae) with description of a new species from Vietnam // Fottea, Olomouc. V. 20(2). P. 137. h ttps://doi.org/10.5507/fot.2020.004
- Gusev E., Karthick B., Martynenko N. et al. 2021. Cryptomonas indica sp. nov. (Cryptophyceae: Cryptomonadales), a new species described from the Western Ghats, India // Phytotaxa. V. 518. P. 261. h ttps://doi.org/10.11646/phytotaxa.518.4.3
- Gusev E., Martynenko N., Kulizin P., Kulikovskiy M. 2022. Molecular diversity of the genus Cryptomonas (Cryptophyceae) in Russia // Eur. J. Phycol. V. 57(4). P. 526. h ttps://doi.org/10.1080/09670262.2022.2031304
- Gusev E., Martynenko N., Shkurina N. et al. 2023. An Annotated Checklist of Algae from the Order Synurales (Chrysophyceae) of Viet Nam // Diversity. V. 15(2). P. 183. h ttps://doi.org/10.3390/d15020183
- Hill D.R.A. 1991a. Chroomonas and other blue-green cryptomonads // J. Phycol. V. 27. P. 133. https://doi.org/10.1111/j.0022-3646.1991.00133.x
- Hill D.R.A. 1991b. A revised circumscription of Cryptomonas (Cryptophyceae) based on examination of Australian strain // Phycologia. V. 30. P. 170. h ttps://doi.org/10.2216/i0031-8884-30-2-170.1
- Hill D.R.A., Rowan K.S. 1989. The biliproteins of the Cryptophyceae // Phycologia. V. 28. P. 455. https://doi.org/10.2216/I0031-8884-28-4-455.1
- Hill D.R.A., Wetherbee R. 1989. A reappraisal of the genus Rhodomonas (Cryptophyceae) // Phycologia. V. 28. P. 143. h ttps://doi.org/10.2216/i0031-8884-28-2-143.1
- Hoef-Emden K., Melkonian M. 2003. Revision of the genus Cryptomonas (Cryptophyceae): a combination of molecular phylogeny and morphology provides insights into a long-hidden dimorphism // Protist. V. 154(3–4). P. 371. h ttps://doi.org/10.1078/143446103322454130
- Hoef-Emden K. 2005. Multiple independent losses of photosynthesis and differing evolutionary rates in the genus Cryptomonas (Cryptophyceae): combined phylogenetic analyses of DNA sequences of the nuclear and the nucleomorph ribosomal operons // J. Mol. Evol. V. 60. P. 183. h ttps://doi.org/10.1007/s00239-004-0089-5
- Hoef-Emden K., Tran H.D., Melkonian M. 2005. Lineage-specific variations of congruent evolution among DNA sequences from three genomes, and relaxed selective constraints on rbc L in Cryptomonas (Cryptophyceae) // BMC Evol. Biol. V. 5. P. 1. https://doi.org/10.1186/1471-2148-5-56
- Hoef-Emden K. 2007. Revision of the genus Cryptomonas (Cryptophyceae) II: Incongruences between classical morphospecies concept and molecular phylogeny in smaller pyrenoid-less cells // Phycologia. V. 46(4). P. 402. h ttps://doi.org/10.2216/06-83.1
- Hoef-Emden K., Archibald J.M. 2017. Cryptophyta (Cryptomonads) // Handbook of the Protists. Cham: Springer International Publishing. P. 851.
- Hornberger L.O., Maggard I.J., Matthews R.A., Cahoon A.B. 2023. Cryptomonas pyrenoidifera organellar genomes and estimation of its ITS2 sequence diversity using lineage directed barcode primers // Phycologia. V. 62(3). P. 280. h ttps://doi.org/10.1080/00318884.2023.2202069
- Javornický P., Hindák F. 1970. Cryptomonas frigoris spec. nova (Cryptophyceae), the new cyst-forming flagellate from the snow of the High Tatras // Biologia. V. 25(4). P. 241.
- Katoh K., Toh H. 2010. Parallelization of the MAFFT multiple sequence alignment program // Bioinformatics. V. 26(15). P. 1899. h ttps://doi.org/10.1093/bioinformatics/btq224
- Kumar S., Stecher G., Li M. et al. 2018. MEGA X: Molecular evolutionary genetics analysis across computing platforms // Mol. Biol. Evol. V. 35(6). P. 1547. https://doi.org/10.1093/molbev/msy096
- Lund J.W.G. 1942. Contributions to our knowledge of British algae. VIII // J. Bot. V. 80. P. 57.
- Martynenko N.A., Gusev E.S., Kulizin P.V. et al. 2020a. A new species of Cryptomonas (Cryptophyceae) from the Western Urals (Russia) // Europ. J. Taxon. V. 649. P. 1. h ttps://doi.org/10.5852/ejt.2020.649
- Martynenko N.A., Gusev E.S., Kapustin D.A. et al. 2020b. Cryptomonas cattiensis sp. nov. (Cryptophyceae: Cryptomonadales), a new species described from Vietnam // Phytotaxa. V. 454(2). P. 127. h ttps://doi.org/10.11646/phytotaxa.454.2.4
- Martynenko N., Kezlya E., Gusev E. 2022a. Description of a new species of the genus Cryptomonas (Cryptophyceae: Cryptomonadales), isolated from soils in a tropical forest // Diversity. V. 14(11). P. 1001. h ttps://doi.org/10.3390/d14111001
- Martynenko N.A., Gusev E.S., Sterlyagova I.N., Kulikovskiy M.S. 2022b. Revealing hidden diversity in the Cryptomonas erosa clade (Cryptophyceae), with the description of two new species from acidic habitats // Phycologia. V. 61(2). P. 184. h ttps://doi.org/10.1080/00318884.2022.2025727
- Mittermeier R.A., Turner W.R., Larsen F.W. et al. 2011. Global biodiversity conservation: the critical role of hotspots // Biodiversity hotspots: distribution and protection of conservation priority areas. Berlin: Springer. P. 3.
- Müller T., Philippi N., Dandekar T. et al. 2007. Distinguishing species // RNA. V. 13(9). P. 1469. h ttps://doi.org/10.1261/rna.617107
- Pascher A. 1925. Neue oder wenig bekannte Protisten. XV. Neue oder wenig bekannte Flagellaten. XIII // Archiv für Protistenkunde. V. 50. P. 486.
- Playfair G.I. 1921. Australian freshwater flagellates // Proceedings of the Linnaean Society of New South Wales. V. 46.
- Ronquist F., Huelsenbeck J.P. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models // Bioinformatics. V. 19(12). P. 1572. h ttps://doi.org/10.1093/bioinformatics/btg180
- Schultz J., Maisel S., Gerlach D. et al. 2005. A common core of secondary structure of the internal transcribed spacer 2 (ITS2) throughout the Eukaryota // RNA. V. 11(4). P. 361. h ttps://doi.org/10.1261/rna.7204505
- Schwarz G. 1978. Estimating the dimension of a model // The annals of statistics. V. 6(2). P. 61. h ttps://doi.org/10.1214/aos/1176344136
- Tanifuji G., Kamikawa R., Moore C.E. et al. 2020. Comparative plastid genomics of Cryptomonas species reveals fine-scale genomic responses to loss of photosynthesis // Genome Biol. Evol. V. 12(2). P. 3926. h ttps://doi.org/10.1093/gbe/evaa001
- Wolf M., Chen S., Song J. et al. 2013. Compensatory base changes in ITS2 secondary structures correlate with the biological species concept despite intragenomic variability in ITS2 sequences – A proof of concept // PloS ONE. V. 8(6). e66726. h ttps://doi.org/10.1371/journal.pone.0066726
- Wuyts J., Van de Peer Y., De Wachter R. 2001. Distribution of substitution rates and location of insertion sites in the tertiary structure of ribosomal RNA // Nucleic Acids Res. V. 29(24). P. 5017. h ttps://doi.org/10.1093/nar/29.24.5017
- Zuker M. 2003. Mfold web server for nucleic acid folding and hybridization prediction // Nucleic Acids Res. V. 31(13). P. 3406. h ttps://doi.org/10.1093/nar/gkg595
补充文件
