The effect of moderate and acute hypoxia on the antioxidant enzyme complex of the tissues of the black sea mussel Mytilus galloprovincialis
- Authors: Gostyukhina O.L.1, Soldatov A.A.1,2
-
Affiliations:
- A.O. Kovalevsky Institute of Biology of the Southern Seas Russian Academy of Sciences
- Sevastopol State University
- Issue: Vol 17, No 5 (2024)
- Pages: 801-809
- Section: ЭКОЛОГИЧЕСКАЯ ФИЗИОЛОГИЯ И БИОХИМИЯ ГИДРОБИОНТОВ
- URL: https://journals.rcsi.science/0320-9652/article/view/272443
- DOI: https://doi.org/10.31857/S0320965224050119
- EDN: https://elibrary.ru/XQUKVA
- ID: 272443
Cite item
Abstract
The effect of moderate (2 mg O2/L) and acute (1 mg O2/L) hypoxia on the state of the antioxidant complex of the mussel Mytilus galloprovincialis (Lamarck, 1819) was studied. The activity of superoxiddismutase (SOD), catalase and glutathione peroxidase (GP) in the hepatopancreas and gills of the mollusk was determined. The reactions of the AO complex of mussels to oxygen deficiency depended on the degree of hypoxic exposure and had tissue specificity. Acute hypoxia had a more pronounced effect on the mussel than moderate. In the gills of the mollusk under acute hypoxia, an increase in the activity of all the studied enzymes was observed. In the digestive gland of the mussel, under these conditions, only catalase activity increased, and SOD significantly decreased. Under moderate hypoxia conditions, the AO protection of the mollusk gills was provided by SOD and GP, and in hepatopancreas – by activation of catalase and GP. These reactions indicate the development of moderate oxidative stress in mussel tissues under both hypoxia regimes. The features of the AO response of gills and hepatopancreas reflect their tissue-specific sensitivity to the effects of oxygen deficiency.
Keywords
Full Text

About the authors
O. L. Gostyukhina
A.O. Kovalevsky Institute of Biology of the Southern Seas Russian Academy of Sciences
Author for correspondence.
Email: gostolga@yandex.ru
Russian Federation, Sevastopol
A. A. Soldatov
A.O. Kovalevsky Institute of Biology of the Southern Seas Russian Academy of Sciences; Sevastopol State University
Email: gostolga@yandex.ru
Russian Federation, Sevastopol; Sevastopol
References
- Гостюхина О.Л. 2020. Особенности антиоксидантной глутатионовой системы в тканях черноморского двустворчатого моллюска (Cardiidae) // Биология внутр. вод. № 3. С. 299. https://doi.org/10.31857/S0320965220030079
- Гостюхина О.Л., Андреенко Т.И. 2018. Ферментное и низкомолекулярное звенья антиоксидантного комплекса двух видов черноморских моллюсков с разной устойчивостью к окислительному стрессу: Mytilus galloprovincialis Lam. и Anadara kagoshimensis (Tokunaga, 1906) // Журн. общ. биол. V. 79. № 6. С. 482. https://doi.org/10.1134/S0044459618060040
- Заика В.Е., Валовая Н.А., Повчун А.С., Ревков Н.К. 1990. Митилиды Черного моря. Науково-виробниче підприємство “Видавництво” “Наук. думка” НАН України”.
- Abele-Oeschger D., Oeschger R. 1995. Hypoxia-induced autoxidation of haemoglobin in the benthic invertebrates Arenicola marina (Polychaeta) and Astarte borealis (Bivalvia) and the possible effects of sulphide // J. Exp. Mar. Biol. and Ecol. V. 187. № 1. P. 63. https://doi.org/10.1016/0022-0981(94)00172-A
- Abele D., Philipp E., Gonzalez P., Puntarulo S. 2007. Marine invertebrate mitochondria and oxidative stress // Frontiers in Bioscience. V. 12. P. 933.
- Almeida E.A., Di Mascio P. 2011. Hypometabolism and antioxidative defense systems in marine invertebrates // Hypometabolism: Strategies of survival in vertebrates and invertebrates. Kerala: Research Signpost. P. 39.
- Andreyeva A.Y., Gostyukhina O.L., Kladchenko E.S., Afonnikov D.A. 2021. Hypoxia exerts oxidative stress and changes in expression of antioxidant enzyme genes in gills of Mytilus galloprovincialis (Lamarck, 1819) // Mar. Biol. Res. V. 17 № 4. P. 369. https://doi.org/10.1080/17451000.2021.1967992
- Andreyeva A.Y., Kladchenko E.S., Gostyukhina O.L., Chelebieva E.S. 2023. Antioxidant and cellular immune response to acute hypoxia stress in the ark shell (Anadara broughtonii) // Estuarine, Coastal and Shelf Sci. V. 281. P. 108222. https://doi.org/10.1016/j.ecss.2023.108222
- Chen J., Mai K., Ma H. et al. 2007. Effects of dissolved oxygen on survival and immune responses of scallop (Chlamys farreri Jones et Preston) // Fish & Shellfish Immunol. V. 22. № 3. P. 272. https://doi.org/10.1016/j.fsi.2006.06.003
- Chen J., Huang J., Peng J. et al. 2022. Effects of hypoxic stress on the digestion, energy metabolism, oxidative stress regulation, and immune function of the pearl oyster (Pinctada fucata martensii) // Aquacult. Reports. V. 25. P. 101246. https://doi.org/10.1016/j.aqrep.2022.101246
- Chatziargyriou V., Dailianis S. 2010. The role of selenium dependent glutathione peroxidase (Se-GPx) against oxidative and genotoxic effects of mercury in haemocytes of mussel Mytilus galloprovincialis (Lmk.) // Toxicology in vitro. V. 24. № 5. P. 1363. https://doi.org/10.1016/j.tiv.2010.04.008
- Cossi P.F., Herbert L.T., Yusseppone M.S. et al. 2020. Toxicity evaluation of the active ingredient acetamiprid and a commercial formulation (Assail® 70) on the non-target gastropod Biomphalaria straminea (Mollusca: Planorbidae) // Ecotoxicol. Environ. Saf. V. 192. e110248. https://doi.org/10.1016/j.ecoenv.2020.110248
- De Zoysa M., Whang I., Lee Y. et al. 2009. Transcriptional analysis of antioxidant and immune defense genes in disk abalone (Haliotis discus discus) during thermal, low-salinity and hypoxic stress // Comp. Biochem. and Physiol. Part B: Biochem. and Mol. Biol. V. 154. № 4. P. 387. https://doi.org/10.1016/j.cbpb.2009.08.002
- Di Giulio R.T., Washburn P.C., Wenning R.J. et al. 1989. Biochemical responses in aquatic animals: a review of determinants of oxidative stress // Environ. Toxicol. and Chem.: Int. J. V. 8(12). P. 1103-1123. https://doi.org/10.1002/etc.5620081203
- Diaz R.J., Rosenberg R. 2008. Spreading dead zones and consequences for marine ecosystems // Science. V. 321. P. 926. https://doi.org/10.1126/science.11564
- Donaghy L., Hong H.K., Jauzein C., Choi K.S. 2015. The known and unknown sources of reactive oxygen and nitrogen species in haemocytes of marine bivalve molluscs // Fish & Shellfish Immunol. V. 42. № 1. P. 91. https://doi.org/10.1016/j.fsi.2014.10.030
- Ekau W., Auel H., Portner H., Gilbert D. 2010. Impacts of hypoxia on the structure and processes in pelagic communities (zooplankton, macro-invertebrates and fish) // Biogeosciences. V. 7. № 5. P. 1669. https://doi.org/10.5194/bg-7-1669-2010
- Gostyukhina O.L. 2021. Short-term hypoxia effect on the state of the antioxidant complex in the Black Sea bivalve mollusk Cerastoderma glaucum (Bruguiere, 1789) // Rus. J. Mar. Biol. V. 47. P. 373. https://doi.org/10.1134/S1063074021050047
- Gostyukhina О.L., Andreyeva A.Yu., Chelebieva E.S. et al. 2022. Adaptive potential of the Mediterranean mussel Mytilus galloprovincialis to short-term environmental hypoxia // Fish and Shellfsh Immunol. V. 131. P. 654. https://doi.org/10.1016/j.fsi.2022.10.052
- Goth L. 1991. A simple method for determination of serum catalase activity and revision of reference range // Clin. Chim. Acta. V. 196. № 2–3. P. 143. https://doi.org/10.1016/0009-8981(91)90067-m
- Halliwell B., Gutteridge J.M.C. 1999. Free radicals in biology and medicine. Oxford: Oxford Univ. Press.
- Hermes-Lima M., Zenteno-Savín T. 2002. Animal response to drastic changes in oxygen availability and physiological oxidative stress // Comp. Biochem. Physiol. Part C: Toxicol. Pharmacol. V. 133. № 4. P. 537. https://doi.org/10.1016/S1532-0456(02)00080-7
- Hermes-Lima M., Moreira D.C., Rivera-Ingraham G.A. et al. 2015. Preparation for oxidative stress under hypoxia and metabolic depression: revisiting the proposal two decades later // Free Radical Biology and Medicine. V. 89. P. 1122. https://doi.org/10.1016/j.freeradbiomed.2015.07.156
- Ivanina A.V., Sokolova I.M. 2016. Effects of intermittent hypoxia on oxidative stress and protein degradation in molluscan mitochondria // J. Exp. Biol. V. 219. № 23. P. 3794. https://doi.org/10.1242/jeb.146209
- Khan B., Ringwood A.H. 2016. Cellular biomarker responses to hypoxia in eastern oysters and Atlantic ribbed marsh mussels // Mar. Ecol. Progress Ser. V. 546. P. 123. https://doi.org/10.3354/meps11622
- Li C., Jackson R.M. 2002. Reactive species mechanisms of cellular hypoxia-reoxygenation injury // Am. J. Physiology-Cell Physiol. V. 282(2), P. 227. https://doi.org/10.1152/ajpcell.00112.2001
- Li Z., Chang X., Hu M., Fang J.K. 2022. Is microplastic an oxidative stressor? Evidence from a meta-analysis on bivalves // J. Hazard Mater. V. 423. P. 127211. https://doi.org/10.1016/j. jhazmat.2021.127211
- Livingstone D.R. 2001. Contaminant-stimulated reactive oxygen species production and oxidative damage in aquatic organisms // Mar. Pollut. Bull. V. 42. № 8. P. 656. https://doi.org/10.1016/S0025-326X(01)00060-1
- Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J. 1951. Protein measurement with the Folin phenol reagent // J. Biol. Chem. V. 193. P. 265. https://doi.org/10.1016/S0021-9258(19)52451-6
- Nishikimi M., Rao N.A., Yagi K. 1972. The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen // Biochem. Biophys. Res. Commun. V. 46. № 2. P. 849. https://doi.org/10.1016/s0006-291x(72)80218-3
- Ouillon N., Sokolov E.P., Otto S., Rehder G. 2021. Effects of variable oxygen regimes on mitochondrial bioenergetics and reactive oxygen species production in a marine bivalve, Mya arenaria // J. Exp. Biol. V. 224. № 4. P. jeb237156. https://doi.org/10.1242/jeb.237156
- Paglia D., Valentine W. 1967. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase // J. Lab. Clin. Med. V. 70. № 1. P. 158.
- Pannunzio T.M., Storey K.B. 1998. Antioxidant defenses and lipid peroxidation during anoxia stress and aerobic recovery in the marine gastropod Littorina littorea // J. Exp. Mar. Biol. and Ecol. V. 221. № 2. P. 277. https://doi.org/10.1016/S0022-0981(97)00132-9
- Power A., Sheehan D. 1996. Seasonal variation in the antioxidant defence systems of gill and digestive gland of the blue mussel, Mytilus edulis // Comp. Biochem. and Physiol. Part C: Pharmacol., Toxicol. and Endocrinol. V. 114. № 2. P. 99. https://doi.org/10.1016/0742-8413(96)00024-2
- Sabatini S.E., Rocchetta I., Luquet C.M., Guido M.I. 2011. Effects of sewage pollution and bacterial load on growth and oxidative balance in the freshwater mussel Diplodon chilensis // Limnologica. V. 41. № 4. P. 356. https://doi.org/10.1016/j.limno.2011.04.004
- Santovito G., Piccinni E., Cassini A., et al. 2005. Antioxidant responses of the Mediterranean mussel, Mytilus galloprovincialis, to environmental variability of dissolved oxygen // Comp. Biochem. and Physiol. Part C: Toxicol. & Pharmacol. V. 140 (3–4). P. 321. https://doi.org/10.1016/j.cca.2005.02.015
- Soldatov A.A., Gostyukhina O.L., Golovina I.V. 2007. Antioxidant enzyme complex of tissues of the bivalve Mytilus galloprovincialis Lam. under normal and oxidative-stress conditions: a review // Appl. Biochem. and Microbiol. V. 43. P. 556. https://doi.org/10.1134/S0003683807050092
- Soldatov A.A., Gostyukhina O.L., Golovina I.V. 2008. State of the antioxidant enzyme complex in tissues of the Black Sea mollusc Mytilus galloprovincialis under natural oxidative stress // J. Evol. Biochem. and Physiol. V. 44. P. 175. https://doi.org/10.1134/S0022093008020047
- Soldatov A.A., Gostyukhina O.L., Golovina I.V. 2014. Functional states of antioxidant enzymatic complex of tissues of Mytillus galloprovincialis Lam. under conditions of oxidative stress // J. Evol. Biochem. and Physiol. V. 50. P. 206. https://doi.org/10.1134/S0022093014030028
- Steffen J.B., Haider F., Sokolov E.P., Bock C. 2021. Mitochondrial capacity and reactive oxygen species production during hypoxia and reoxygenation in the ocean quahog, Arctica islandica // J. Exp. Biol. V. 224. № 21. P. jeb243082. https://doi.org/10.1242/jeb.243082
- Storey K.B. 1993. Molecular mechanisms of metabolic arrest in mollusks // Surviving hypoxia: mechanisms of control and adaptation. P. 253.
- Sui Y., Hu M., Shang Y., Wu F. 2017. Antioxidant response of the hard-shelled mussel Mytilus coruscus exposed to reduced pH and oxygen concentration // Ecotoxicol. and Environ. Saf. V. 137. P. 94. https://doi.org/10.1016/j.ecoenv.2016.11.023
- Tomanek L. 2015. Proteomic responses to environmentally induced oxidative stress // J. Exp. Biol. V. 218. P. 1867. https://doi.org/10.1242/jeb.116475
- Tomanek L., Zuzow M., Ivanina A. et al. Proteomic response to elevated PCO2 level in eastern oysters, Crassostrea virginica: evidence for oxidative stress // J. Exp. Biol. V. 214. P. 1836. https://doi.org/10.1242/jeb.055475
- Trevisan R., Mello D.F., Delapedra G. et al. 2016. Gills as a glutathione-dependent metabolic barrier in Pacific oysters Crassostrea gigas: Absorption, metabolism and excretion of a model electrophile // Aquat. Toxicol. V. 173. P. 105. https://doi.org/10.1016/j.aquatox.2016.01.00
- Vaquer-Sunyer R., Duarte C. 2008. Thresholds of hypoxia for marine biodiversity // Proc. Nat. Acad. Sci. V. 105. № 40. P. 15452. https://doi.org/10.1073/pnas.0803833105
- Welker A., Moreira D., Campos É., Hermes-Lima M. 2013. Role of redox metabolism for adaptation of aquatic animals to drastic changes in oxygen availability // Comp. Biochem. and Physiol. Part A: Mol. and Integr. Physiol. V. 165. № 4. P. 384. https://doi.org/10.1016/j.cbpa.2013.04.003
- Woo S., Denis V., Won H. et al. 2013. Expressions of oxidative stress-related genes and antioxidant enzyme activities in Mytilus galloprovincialis (Bivalvia, Mollusca) exposed to hypoxia // Zool. Stud. V. 52. P. 1. https://doi.org/10.1186/1810-522X-52-15
- Zwaan A., Cortesi P., ThiHart G., van den Roos J. 1991. Differential sensitivities to hypoxia by two anoxia-tolerant marine molluscs: a biochemical analysis // Mar. Biol. V. 111. P. 343. https://doi.org/10.1007/BF01319405
Supplementary files
