The effect of temperature on the activity of microorganisms in the area of the Bureiskiy Landslide
- Authors: Kondratyeva L.М.1, Andreeva D.V.1, Litvinenko Z.N.1, Golubeva E.M.2,3
-
Affiliations:
- Institute of the water and ecology problems, Far Eastern Branch, Russian Academy of Sciences
- Kosygin Institute of Tectonics and Geophysics, Far Eastern Branch, Russian Academy of Sciences
- Federal State Budgetary Educational Institution of Higher Education “Pacific State University”
- Issue: Vol 17, No 5 (2024)
- Pages: 713-721
- Section: ВОДНАЯ МИКРОБИОЛОГИЯ
- URL: https://journals.rcsi.science/0320-9652/article/view/272425
- DOI: https://doi.org/10.31857/S0320965224050035
- EDN: https://elibrary.ru/xsmiwn
- ID: 272425
Cite item
Abstract
The manuscript presents the results of experimental studies of the adaptive potential of microorganisms that are part of the bacterioplankton of the surface and bottom water layers of the Bureiskoe Reservoir in the zone of the landslide that descended in the winter of 2018. In the summer of 2022, the structure and activity of microbial complexes from area near the landslide were studied. More than 60 strains of microorganisms of different physiological groups were isolated. On the example of 4 strains isolated from different habitats (above and below the landslide body, surface and bottom layers of water) after 30 days of freezing at a temperature of –18°C, their viability and activity in the utilization of easily available nitrogen-containing organic substances were shown. In experimental cyclic freezing-thawing, two variants of thawing were used: slow thawing in a refrigerator from –18°C to +4°C; fast defrosting over a wide temperature range from –18°C to +23°C (at room temperature). Regardless of location, all strains grew vigorously in vitro with use of a readily available peptone carbon source before and after freezing. The maximum activity on peptone was shown by strain 40 BB (below the landslide body, bottom water) in the absence of substrate change. Utilization of peptone as a source of amino acids and peptides could be accompanied by activation of the protective function against cold stress. The selected strains of microorganisms differed in their ability to transform sodium humate molecules depending on the conditions of the freeze/thaw cycles. According to the spectral characteristics, significant changes in the aliphatic and aromatic components of the humate molecule occurred with the participation of strains 45 AB and 40 BB isolated from the bottom water. These strains were more active at low thawing temperatures, which actually corresponded to the in situ temperature of the bottom water layers, which is 4–6°C. Strain 13 BS from surface water sampled below the landslide body is characterized by active transformation of the aromatic component of humic substances in a wide range of thawing temperatures (from –18 to +23°C). The results indicate that in different regions during the thawing of permafrost and the influx of specific organic substances the specific mechanisms of formation of the quality of natural waters may manifest.
Full Text

About the authors
L. М. Kondratyeva
Institute of the water and ecology problems, Far Eastern Branch, Russian Academy of Sciences
Email: freckles2008@yandex.ru
Russian Federation, Khabarovsk
D. V. Andreeva
Institute of the water and ecology problems, Far Eastern Branch, Russian Academy of Sciences
Author for correspondence.
Email: freckles2008@yandex.ru
Russian Federation, Khabarovsk
Z. N. Litvinenko
Institute of the water and ecology problems, Far Eastern Branch, Russian Academy of Sciences
Email: freckles2008@yandex.ru
Russian Federation, Khabarovsk
E. M. Golubeva
Kosygin Institute of Tectonics and Geophysics, Far Eastern Branch, Russian Academy of Sciences; Federal State Budgetary Educational Institution of Higher Education “Pacific State University”
Email: freckles2008@yandex.ru
Russian Federation, Khabarovsk; Khabarovsk
References
- Глушакова А.М., Лысак Л.В., Качалкин А.В. и др. 2021. Трансформация микробных комплексов в компонентах почвенных конструкций разного генезиса (почва, торф, песок) при процессах замораживания–оттаивания // Микробиология. Т. 90. № 2. С. 166.
- Зеркаль О.В., Махинов А.Н., Кудымов А.В. и др. 2019. Буреинский оползень 11 декабря 2018 г. Условия формирования и особенности механизма развития // ГеоРиск. Т. XIII. № 4. С. 18.
- Кондратьева Л.М., Махинов А.Н., Андреева Д.В., Башкурова А.С. 2020. Изменение качества воды в Бурейском водохранилище в результате крупного оползня // Водн. ресурсы. Т. 47. № 2. С. 170.
- Кондратьева Л.М., Литвиненко З.Н., Андреева Д.В., Башкурова А.С. 2021. Изменение численности и активности микробоценозов в зоне влияния крупного оползня на Бурейском водохранилище // Биология внутр. вод. № 3. С. 243. https://doi.org/10.31857/S0320965221030086
- Кулаков В.В., Махинов А.Н., Ким В.И., Остроухов А.В. 2019. Катастрофический оползень и цунами в водохранилище Бурейской ГЭС (бассейн Амура) // Геоэкология. Инженерная геология. Гидрогеология. № 3. С. 12.
- Кусковский В.С. 2011. Экзогенные геологические процессы на берегах Саяно-Шушенского водохранилища // Проблемы гидрогеологии, инженерной геологии и гидрогеоэкологии: Матер. Всерос. науч. конф. Томский политехн. ун-т. Томск: Изд-во НТЛ. С. 140.
- Махинов А.Н., Ким В.И., Остроухов А.В., Матвеенко Д.В. 2019. Крупный оползень в долине реки Бурея и цунами в водохранилище Бурейской ГЭС // Вестн. Дальневосточного отделения Российской академии наук. № 2. С. 35.
- Махинов А.Н., Махинова А.Ф., Левшина С.И. 2020. Оценка смыва водно-ледяным цунами почвенного покрова и качество воды в районе оползня на Бурейском водохранилище // Метеорология и гидрология. № 11. С. 64.
- Мордовин А.М., Шестеркин В.П., Антонов А.Л. 2006. Река Бурея: гидрология, гидрохимия, ихтиология. Хабаровск: ИВЭП ДВО РАН.
- Намсараев Б.Б., Бархутова Д.Д., Хасинов В.В. 2006. Полевой практикум по водной микробиологии и гидрохимии. Методическое пособие. Улан-Удэ: Изд-во БГУ.
- Черобаева А.С., Степанов А.Л., Кравченко И.К. 2011. Отклик аммонийокисляющих бактерий и архей на резкие изменения температуры в почвах разных климатических зон // Проблемы агрохимии и экологии. № 3. С. 17.
- Ширшова Л.Т., Гиличинский Д.А., Остроумова Н.В., Ермолаев А.М. 2015. Применение спектрофотометрии для определения содержания гуминовых веществ в многолетнемерзлых отложениях // Криосфера Земли. Т. 19. № 4. С. 107.
- Acuña-Rodríguez I.S., Newsham K.K., Gundel P.E. et al. 2020. Functional roles of microbial symbionts in plant cold tolerance // Ecol. Lett. V. 23. P. 1034.
- Allsup C.M., George I., Lankau R.A. 2023. Shifting microbial communities can enhance tree tolerance to changing climates// Science. V. 380(6647). P. 835. https://doi.org/10.1126/science.adf2027
- Andres N., Badoux A. 2018. The Swiss flood and landslide damage database: normalisation and trends // J. Flood Risk Manag. e12510.
- Bell N.G.A., Murray L., Graham M.C., Uhrin D. 2014. NMR methodology for complex mixture ‘separation’ // Chem. Communications. V. 50. №. 14. Р. 1694.
- Christner B.C. 2002. Incorporation of DNA and protein precursors into macromolecules by bacteria at –15 degrees C // Appl. Environ. Microbiol. V. 68. Р. 6435.
- Dutta K., Schuur E.A.G., Neff J.C., Zimov S.A. 2006. Potential carbon release from permafrost soils of Northeastern Siberia // Global Change Biol. V. 12. Р. 2336.
- Jansson J.K., Tas N. 2014. The microbial ecology of permafrost // Nat. Rev. Microbiol. V. 12. P. 414.
- Hou N., Wen L., Cao H. et al. 2017. Role of psychrotrophic bacteria in organic domestic waste composting in cold regions of China // Bioresour. Technol. V. 236. P. 20.
- Lee B.M., Seo Y.S., Hur J. 2015. Investigation of adsorptive fractionation of humic acid on graphene oxide using fluorescence EEM-PARAFAC // Water Res. V. 73. P. 242.
- Patton A.I., Rathburn S.L., Capps D.M. 2019. Landslide response to climate change in permafrost regions // Geomorphology. V. 340. P. 116.
- Perminova I.V. 2019. From green chemistry and nature-like technologies towards ecoadaptive chemistry and technology // Pure and Appl. Chem. V. 91. № 5. P. 851.
- Price P.B., Sowers T. 2004. Temperature dependence of metabolic rates for microbial growth, survival and maintenance // Proc. Nat. Acad. Sci. V. 101. P. 4631.
- Keuschnig C., Larose C., Rudner M. et al. 2022. Reduced methane emissions in former permafrost soils driven by vegetation and microbial changes following drainage // Global Change Biol. V. 28(10). Р. 3411.
- Koh H.Y., Park H., Lee J.H. et al. 2017. Proteomic and transcriptomic investigations on cold-responsive properties of the psychrophilic Antarctic bacterium Psychrobacter sp. PAMC 21119 at subzero temperatures // Environ. Microbiol. V. 19(2). P. 628.
- Kramshøj M., Albers C.N., Holst T. et al. 2018. Biogenic volatile release from permafrost thaw is determined by the soil microbial sink // Nat. Commun. V. 9. e-3412. https://doi.org/10.1038/s41467-018-05824-y
- Kumar S. 2006. Organic chemistry. spectroscopy of organic compounds // Guru Nanak Dev University.
- Kwon M.J., Jung J.Y., Tripathi B.M. et al. 2019. Dynamics of microbial communities and CO2 and CH4 fluxes in the tundra ecosystems of the changing Arctic // J. Microbiol. V. 57(5). Р. 325. https://doi.org/10.1007/s12275-019-8661-2
- Lawrence D.M., Koven C.D., Swenson S.C. et al. 2015. Permafrost thaw and resulting soil moisture changes regulate projected high-latitude CO2 and CH4 emissions // Environ. Res. Letters. V. 10(9). е094011. https://doi.org/110.1088/1748-9326/10/9/094011
- Margesin R., Collins T. 2019. Microbial ecology of the cryosphere (glacial and permafrost habitats): current knowledge // Appl. Microbiol. and Biotechnol. V. 103. Р. 1. https://doi.org/10.1007/s00253-018-9435-1
- Messan K.S., Jones R.M., Doherty S.J. et al. 2020. The role of changing temperature in microbial metabolic processes during permafrost thaw // PLoS ONE. V. 15(4). e0232169. https://doi.org/10.1371/journal.pone.0232169
- Oh Y., Zhuang Q., Liu L. et al. 2020. Reduced net methane emissions due to microbial methane oxidation in a warmer Arctic // Nature Climate Change. V. 10(4). Р. 317. https://doi.org/110.1038/s41558-020-0734-z
- Rivkina E., Laurinavichius K., McGrath J. et al. 2004. Microbial life in permafrost // Adv. Space Res. V. 33. P. 1215.
- Rivkina E., Shcherbakova V., Laurinavichius K. et al. 2007. Biogeochemistry of methane and methanogenic archaea in Permafrost // FEMS Microbiol Ecol. V. 61. P. 1.
- Schuur E.A.G., Bracho R., Celis G. et al. 2021. Tundra underlain by thawing permafrost persistently emits carbon to the atmosphere over 15 years of measurements // J. Geophys. Res: Biogeosciences. V. 126(6). e 2020JG006044. https://doi.org/10.1029/2020JG006044
- Struvay С., Feller G. 2012. Optimization to Low Temperature Activity in Psychrophilic Enzymes // Int. J. Molecular Sci. V. 13(9). P. 11643. https://doi.org/10.3390/ijms130911643
- Vasilevich R., Lodygin E., Abakumov E. 2018. Molecular composition of humic substances isolated from permafrost peat soils of the eastern European Arctic // Pol. Polar Res. V. 39(4). P. 48.
- Zhang D., Chen A.Q., Xiong D.H., Liu G.C. 2013. Effect of moisture and temperature conditions on the decay rate of purple mudstone in south-western China // Geomorphology. V. 182. P. 125.
- Zheng Q., Shen S.-L., Zhou A.-N., Cai H. 2019. Investigation of landslides that occurred in August on the Chengdu–Kunming Railway, Sichuan, China // Geosciences. V. 9. № 12. e 497.
- Zona D. 2016. Long-term effects of permafrost thaw // Nature. V. 537(7622). Р. 625. https://doi.org/10.1038/537625a
Supplementary files
