Composition of the Low Molecular Weight Metabolome of Potamogeton perfoliatus (Potamogetonaceae) as an Indicator of the Transformation of the Ecological State of the Littoral Zone
- Authors: Krylova J.V.1, Kurashov Е.А.2, Protopopova E.V.2, Khodonovich V.V.2,3, Yavid E.Y.2, Kuchareva G.I.2
-
Affiliations:
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences
- St. Petersburg Federal Research Center of the Russian Academy of Sciences
- Saint-Petersburg Branch of the Federal State Budgetary Scientific Institution “All-Russian Research Institute of Fisheries and Oceanography” (“GosNIORCH” by L.S. Berg)
- Issue: Vol 17, No 4 (2024)
- Pages: 555-565
- Section: ВЫСШАЯ ВОДНАЯ РАСТИТЕЛЬНОСТЬ
- URL: https://journals.rcsi.science/0320-9652/article/view/269863
- DOI: https://doi.org/10.31857/S0320965224040048
- EDN: https://elibrary.ru/YJXAUA
- ID: 269863
Cite item
Abstract
The composition and nature of changes in the low-molecular-weight metabolome (NM) of Potamogeton perfoliatus L., growing in 6 biotopes of Lake Ladoga with different types of the anthropogenic load has been analyzed. According to the research results, it was found that the total number of low molecular weight organic compounds (LMWOCs) in the P. perfoliatus NM composition is directly dependent on anthropogenic load, which is well marked by the development of cyanobacteria. The greater the intensity of pollution or eutrophication of waters, or the higher the number of cyanobacteria, the lower the total number of LMWOCs and their concentration. A strongly pronounced dependence of the total concentrations of groups of NM compounds on the anthropogenic disturbance of the biotope and the concentration of cyanobacteria was revealed. A decrease in the number, relative amount, total concentration of carboxylic acids, number and content of unsaturated fatty acids, and, at the same time, an increase in the composition and content of phenols and the total content of aldehydes and ketones depends on an increase in anthropogenic pressure. The specific composition of NM of pierced pondweed depends on its response to biotic and abiotic factors of the aquatic environment, including anthropogenic ones. The revealed features of the change in the composition of P. perfoliatus NM make it possible to use it as an integral indicator of the anthropogenic impact on the littoral biotopes of water bodies and the deterioration of their ecological state.
Full Text

About the authors
J. V. Krylova
Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences
Email: evgeny_kurashov@mail.ru
Russian Federation, Borok, Nekouzsky raion, Yaroslavl oblast
Е. А. Kurashov
St. Petersburg Federal Research Center of the Russian Academy of Sciences
Author for correspondence.
Email: evgeny_kurashov@mail.ru
Russian Federation, Saint Petersburg
E. V. Protopopova
St. Petersburg Federal Research Center of the Russian Academy of Sciences
Email: evgeny_kurashov@mail.ru
Russian Federation, Saint Petersburg
V. V. Khodonovich
St. Petersburg Federal Research Center of the Russian Academy of Sciences; Saint-Petersburg Branch of the Federal State Budgetary Scientific Institution “All-Russian Research Institute of Fisheries and Oceanography” (“GosNIORCH” by L.S. Berg)
Email: evgeny_kurashov@mail.ru
Russian Federation, Saint Petersburg; Saint-Petersburg
E. Ya. Yavid
St. Petersburg Federal Research Center of the Russian Academy of Sciences
Email: evgeny_kurashov@mail.ru
Russian Federation, Saint Petersburg
G. I. Kuchareva
St. Petersburg Federal Research Center of the Russian Academy of Sciences
Email: evgeny_kurashov@mail.ru
Russian Federation, Saint Petersburg
References
- Андронникова И.Н., Распопов И.М., Курашов Е.А. 2011. Зоны экологического риска в прибрежных районах Ладожского озера, выявленные на основе гидробиологических и гидрохимических показателей // Литоральна зона Ладожского озера. СПб.: Нестор-История. C. 366.
- Вейсберг Е.И., Исакова Н.А. 2022. Реакция макрофитов на периодичеcкие изменения уровня воды в оз. Большое Миассово (Южный Урал, Россия) // Биология внутр. вод. № 3. С. 318. https://doi.org/10.31857/S0320965222020176
- Гуревич Ф.А. 1978. Роль фитонцидов во внутренних водоемах // Водн. ресурсы. № 2. С. 133.
- Гусева К.А. 1959. К методике учета фитопланктона // Тр. Ин-та биологии водохранилищ. № 5. С. 44.
- Крылова Ю.В., Курашов Е.А., Пономаренко А.М. и др. 2022. Оценка экологического состояния литоральной зоны Ладожского озера по результатам исследований 2019 года // Тр. Карельск. науч. центра Российской академии наук. № 2. С. 1. https://doi.org/10.17076/lim1474
- Крылова Ю.В., Курашов Е.А., Русанов А.Г. 2020. Сравнительный анализ компонентного состава низкомолекулярного метаболома горца земноводного (Persicaria amphibia (L.) Delarbre)) из разнотипных местообитаний в Ладожском озере // Тр. Карельск. науч. центра РАН. № 4. С. 95. https://doi.org/10.17076/lim1141
- Курашов Е.А., Крылова Ю.В., Батаева Ю.В. и др. 2019. Альгицид для подавления развития цианобактерий и зеленых водорослей на основе метаболитов – аллелохемиков водных растений // Патент на изобретение RU 2709308 C1, 17.12.2019. – Заявка № 2019104959 от 21.02.2019 (https://patents.s3.yandex.net/RU2709308C1_20191217.pdf: Дата обращения 28.02.2023).
- Курашов Е.А., Крылова Ю.В., Егорова А.А. и др. 2018a. Перспективы использования низкомолекулярного метаболома водных макрофитов для индикации экологического состояния водных экосистем // Вода: химия и экология. № 1–3. С. 68.
- Курашов Е.А., Митрукова Г.Г., Крылова Ю.В. 2018b. Межгодовая изменчивость состава низкомолекулярных метаболитов Ceratophyllum demersum (Ceratophyllaceae) в пойменном озере с изменяющимся трофическим состоянием // Сиб. экол. журн. № 2. С. 207. https://doi.org/10.15372/SEJ20180206
- Литоральная зона Ладожского озера. 2011. СПб.: Нестор-История.
- Митрукова Г.Г., Капустина Л.Л., Курашов Е.А. 2020. Экологическая оценка качества вод литоральной зоны Ладожского озера по результатам микробиологических исследований // Тр. Карельск. науч. центра РАН. № 9. С. 88. https://doi.org/10.17076/lim1277
- Распопов И.М. 1985. Высшая водная растительность больших озер Северо-Запада СССР. Л.: Наука.
- Садчиков А.П. 2003. Методы изучения пресноводного фитопланктона: методическое руководство. М.: Университет и школа.
- Судницына Д.Н. 2005. Экология водорослей Псковской области. Уч. пособие. Псков: ПГПУ.
- Ткачев А.В. 2008. Исследование летучих веществ растений. Новосибирск: Издательско-полиграфическое предприятие “Офсет”.
- Allelopathy. Current trends and future applications. 2013. Berlin: Springer.
- Appenroth K.-J., Sree K.S., Böhm V. et al. 2017. Nutritional value of duckweeds (Lemnaceae) as human food // Food Chem. V. 217. P. 266. https://doi.org/10.1016/j.foodchem.2016.08.116
- Asif A., Baig M.A., Siddiqui M.B. 2021. Role of jasmonates and salicylates in plant allelopathy // jasmonates and salicylates signaling in plants. Signaling and communication in plants. Cham: Springer. P. 115. https://doi.org/10.1007/978-3-030-75805-9_6
- Aslam F., Khaliq A., Matloob A. et al. 2017. Allelopathy in agro-ecosystems: a critical review of wheat allelopathy-concepts and implications // Chemoecol. V. 27. P. 1. https://doi.org/10.1007/s00049-016-0225-x
- Caputo L., Amato G., de Bartolomeis P. et al. 2022. Impact of drying methods on the yield and chemistry of Origanum vulgare L. essential oil // Sci. Reports. V. 12. P. 3845. https://doi.org/10.1038/s41598-022-07841-w
- Czekanowski J. 1922. Coefficient of racial likeness and durchschnittliche Differenz // Anthropol. Anz. V. 9. P. 227.
- Dvořáková Březinová T., Vymazal J. 2018. Phenolic compounds in wetland macrophytes // Scientia Agriculturae Bohemica. V. 49(1). P. 1. https://doi.org/ 10.2478/sab-2018-0001
- Fink P. 2007. Ecological functions of volatile organic compounds in aquatic systems // Mar. Freshwater Behav. Physiol. V. 40. P. 155.
- Gao Y.-N., Liu B.-Y., Xu D. et al. 2011. Phenolic compounds exuded from two submerged freshwater macrophytes and their allelopathic effects on microcystis aeruginosa // Pol. J. Environ. Stud. V. 20(5). P. 1153.
- Gopal B., Goel U. 1993. Competition and allelopathy in aquatic plant communities // The Bot. Review. V. 59. № 3. P. 155.
- Haroon A.M. 2020. Proximate and total fatty acid composition of some aquatic macrophytes in the Nile River Rayahs, Egypt // Pakistan J. Biol. Sci. V. 23. P. 295. https://doi.org/10.3923/pjbs.2020.295.305
- Hassan F.M., Salman J.M., Dou Abul A.A. et al. 2016. Polycyclic aromatic hydrocarbon (PAHs) concentrations in some aquatic macrophytes in Hilla River, Iraq // J. Environ. Protection. V. 7(2). P. 198. https://doi.org/10.4236/jep.2016.72018
- Hassanpouraghdam M.B., Hassani A., Vojodi L. et al. 2010. Drying method affects essential oil content and composition of Basil (Ocimum basilicum L.) // J. Essential Oil Bearing Plants. V. 13(6). P. 759.
- Hegazy A.K., Amer W.M., Khedr A.A. 2001. Allelopathic effect of Nymphaea lotus L. on growth and yield of cultivated rice around Lake Manzala (Nile Delta) // Hydrobiologia. V. 464. P. 133. https://doi.org/10.1023/A:1013943318230
- Hu H., Hong Y. 2008. Algal-bloom control by allelopathy of aquatic macrophytes – a review // Frontiers Environ. Sci. Engineering in China. V. 2(4). P. 421.
- Jaccard P. 1901. Distribution de la flore alpine dans le Bassin des Dranses et dans quelques regions voisines // Bull. Soc. Vaudoise Sci. Natur. V. 37. Bd 140. P. 241.
- Kumar G., Sharma J., Goswami R.K. et al. 2022. Freshwater Macrophytes: a potential source of minerals and fatty acids for fish, poultry, and livestock // Front. Nutr. Apr. V. 11. e9:869425. https://doi.org/10.3389/fnut.2022.869425
- Kurashov E.A., Mitrukova G.G., Krylova Yu.V. 2018. Interannual variability of low-molecular metabolite composition in Ceratophyllum demersum (Ceratophyllaceae) from a floodplain lake with a changeable trophic status // Contemp. Problems Ecol. V. 11(2). P. 179. https://doi.org/10.1134/S1995425518020063
- Kurashov E., Krylova J., Protopopova E. 2021. The Use of allelochemicals of aquatic macrophytes to suppress the development of cyanobacterial “Blooms” // Plankton Communities. London: IntechOpen. https://doi.org/10.5772/intechopen.95609
- Kurashov E.A., Krylova J.V., Mitrukova G.G., Chernova A.M. 2014. Low-molecular-weight metabolites of aquatic macrophytes growing on the territory of Russia and their role in hydroecosystems // Contemp. Problems Ecol. V. 7(4). P. 433. https://doi.org/10.1134/S1995425514040064
- Morisita M. 1959. Measuring of interspecific association and similarity between communities // Memoires of the Faculty of Science. Kyushu University. Ser. E (Biol.). № 3. P. 65.
- Mushtaq W., Siddiqui M.B., Hakeem K.R. 2020. Allelopathy. Potential for green agriculture. Springer Briefs in Agriculture. https://doi.org/10.1007/978-3-030-40807-7
- Nakai S., Yamada S., Hosomi M. 2005. Anti-cyanobacterial fatty acids released from Myriophyllum spicatum // Hydrobiologia. V. 543. P. 71.
- Śliwińska-Wilczewska S., Wiśniewska K.A., Budzałek G., Konarzewska Z. 2021. Phenomenon of Allelopathy in Cyanobacteria // Ecophysiology and Biochemistry of Cyanobacteria. Singapore: Springer. P. 225. https://www.doi.org/10.1007/978-981-16-4873-1_11
- Sorensen T.A. 1948. A method of establishing groups of equal amplitude in plant sociology based on similarity of species content, and its application to analyses of the vegetation on Danish commons // Kongelige Danske Videnskabernes Selskabs Biologiske Skrifter. V. 5. P. 1.
- Sun X., Jin H., Zhang L. et al. 2016. Screening and isolation of the algicidal compounds from marine green alga Ulva intestinalis // Chin. J. Ocean. Limnol. V. 34. Р. 781. https://doi.org/10.1007/s00343-016-4383-z
- Zhu X., Dao G., Tao Y. et al. 2021. A review on control of harmful algal blooms by plant-derived allelochemicals // J. Hazardous Mat. V. 401. P. 123403. https://doi.org/10.1016/j.jhazmat.2020.123403
- Zuo S., Zhou S., Ye L. et al. 2016. Antialgal effects of five individual allelochemicals and their mixtures in low level pollution conditions // Environ. Sci. Pollut. Res. V. 23. Р. 15703. https://doi.org/10.1007/s11356-016-6770-6
Supplementary files
