Determining the Consequences of Climate Change for Aquatic Ecosystems Using Bioassay Methods: a Review
- 作者: Olkova A.S.1
-
隶属关系:
- Vyatka State University
- 期: 卷 17, 编号 3 (2024)
- 页面: 481-488
- 栏目: МЕТОДЫ ИССЛЕДОВАНИЯ
- URL: https://journals.rcsi.science/0320-9652/article/view/266959
- DOI: https://doi.org/10.31857/S0320965224030122
- EDN: https://elibrary.ru/ZPBNWC
- ID: 266959
如何引用文章
详细
The article describes the scientific and methodological possibilities of bioassay in the field of studying the effects of climate change on water bodies and aquatic organisms. In fish aquaculture, it was revealed that an increase in water temperature changes the biochemical parameters of the internal environments of organisms, affects their behavior and the number of offspring. A number of biogeochemical transformations of aquatic ecosystems are predicted: a decrease in the pH of water, mineralization of organic matter of bottom sediments, release and increase in bioavailability of compounds of potentially toxic elements. Bioassay methods using monocultures and laboratory microcosms have shown that maximum temperature values and a cascade of concomitant changes will lead to a restructuring of the aquatic life community, changes in the habitats of organisms, and the disappearance of stenothermic species. The realism of such scenarios is confirmed by paleodata and modern natural phenomena.
全文:

参考
- Анисимов О.А., Борщ С.В., Георгиевский В.Ю. и др. 2012. Методы оценки последствий изменения климата для физических и биологических систем. М.: Научно-исслед. центр космическ. гидрометеорол. “Планета”. 512 с.
- Брагинский Л.П., Береза В.Д., Биргер Т.И. и др. 1979. Экспериментальное тестирование токсичности водной среды и повышение чувствительности биологических тестов // Влияние загрязняющих веществ на гидробионтов и экосистемы водоемов. Л.: Наука. С. 324.
- Филенко О.Ф., Михеева И.В. 2007. Основы водной токсикологии. М.: Колос.
- Abbink W., Blanco G.A., Roques J.A.C. et al. 2012. The effect of temperature and pH on the growth and physiological response of juvenile yellowtail kingfish Seriola lalandi in recirculating aquaculture systems // Aquaculture. V. 330(333). P. 130. https://doi.org/10.1016/j.aquaculture.2011.11.043
- Agyekum T.P., Arko-Mensah J., Botwe P.K. et al. 2022. Relationship between temperature and Anopheles gambiae sensu lato mosquitoes’ susceptibility to pyrethroids and expression of metabolic enzymes // Parasites Vectors. V. 15. № 1. P. 163. https://doi.org/10.1186/s13071-022-05273-z
- Ahonen S.A., Hayden B., Leppänen J.J. et al. 2018. Climate and productivity affect total mercury concentration and bioaccumulation rate of fish along a spatial gradient of subarctic lakes // Sci. Total Environ. V. 637. P. 1586. https://doi.org/10.1016/j.scitotenv.2018.04.436
- Aichner B., Wünnemann B., Callegaro A. et al. 2022. Asynchronous responses of aquatic ecosystems to hydroclimatic forcing on the Tibetan Plateau // Communications Earth and Environ. V. 3. № 1. e3. https://doi.org/10.1038/s43247-021-00325-1
- Allen J., Gross E., Courcoul C. 2021. Disentangling the direct and indirect effects of agricultural runoff on freshwater ecosystems subject to global warming: A microcosm study // Water Res. V. 19015. e116713. https://doi.org/10.1016/j.watres.2020.116713
- Almeida Â., Calisto V., Esteves V. et al. 2021. Can ocean warming alter sub-lethal effects of antiepileptic and antihistaminic pharmaceuticals in marine bivalves? // Aquat. Toxicol. V. 230. e105673. https://doi.org/10.1016/j.aquatox.2020.105673
- Andrade M., De Marchi L., Pretti C. et al. 2019. The impacts of warming on the toxicity of carbon nanotubes in mussels // Mar. Environ. Res. V. 145. P. 11. https://doi.org/10.1016/j.marenvres.2019.01.013
- Andrade M., Soares A.M.V.M., Solé M. et al. 2022. Do climate change related factors modify the response of Mytilus galloprovincialis to lanthanum? The case of temperature rise // Chemosphere. V. 307. e135577. https://doi.org/10.1016/j.chemosphere.2022.135577
- Bardin M.Y., Ran’kova E.Y., Platova T.V. et al. 2020. Modern Surface Climate Change as Inferred from Routine Climate Monitoring Data // Russ. Meteorol. Hydrol. V. 45. № 5. P. 317. https://doi.org/10.3103/S1068373920050027
- Basconcillo J., Moon I.-J. 2022. Increasing activity of tropical cyclones in East Asia during the mature boreal autumn linked to long-term climate variability // NPJ Clim. Atmos. Sci. V. 5(1). e4. https://doi.org/10.1038/s41612-021-00222-6
- Beringer J., Moore C.E., Cleverly J. et al. 2022. Bridge to the future: important lessons from 20 years of ecosystem observations made by the OzFlux network // Globаl Chang Biol. V. 28(11). P. 3489. https://doi.org/10.1111/gcb.16141
- Bosserelle A.L., Morgan L.K., Hughes M.W. 2022. Groundwater rise and associated flooding in coastal settlements due to sea-level rise: a review of processes and methods // Earth’s Future. V. 10. № 7. e2021EF002580. https://doi.org/10.1029/2021EF002580
- Carneiro A.P., Soares C.H.L., Pagliosa P.R. 2021. Does the environmental condition affect the tolerance of the bivalve Anomalocardia flexuosa to different intensities and durations of marine heatwaves? // Mar. Pollut. Bull. V. 168. № 112410. https://doi.org/10.1016/j.marpolbul.2021.112410
- Costábile A., Castellano M., Aversa-Marnai M. et al. 2022. A different transcriptional landscape sheds light on Russian sturgeon (Acipenser gueldenstaedtii) mechanisms to cope with bacterial infection and chronic heat stress // Fish Shellfish Immunol. V. 128. P. 505. https://doi.org/10.1016/j.fsi.2022.08.022
- Couret J., Dotson E., Benedict M.Q. 2014. Temperature, larval diet, and density effects on development rate and survival of Aedes aegypti (Diptera: Culicidae) // PLoS ONE. V. 9. e87468. https://doi.org/10.1371/journal.pone.0087468
- Daniel D., Nunes B., Pinto E. et al. 2022. Assessment of paracetamol toxic effects under varying seawater pH conditions on the marine polychaete Hediste diversicolor using biochemical endpoints // Biology. V. 11(4). № 581. https://doi.org/10.3390/biology11040581
- Devotta D.A., Kent A.D., Nelson D.M. et al. 2022. Effects of alder- and salmon-derived nutrients on aquatic bacterial community structure and microbial community metabolism in subarctic lakes // Oecologia. V. 199. № 3. P. 711. https://doi.org/10.1007/s00442-022-05207-7
- Du P., Ye W.-J., Deng B.-P. et al. 2022. Long-term changes in zooplankton in the Changjiang estuary from the 1960s to 2020 // Front. Mar. Sci. V. 9. e961591. https://doi.org/10.3389/fmars.2022.961591
- Ferreira P., Gabriel A., Sousa J.P. et al. 2022. Representativeness of Folsomia candida to assess toxicity of a new generation insecticide in different temperature scenarios // Sci. Total Environ. V. 837. e155712. https://doi.org/10.1016/j.scitotenv.2022.155712
- Fulton C.A., Huff Hartz K.E., Fuller N.W. et al. 2021. Fitness costs of pesticide resistance in Hyalella azteca under future climate change scenarios // Sci. Total Environ. V. 753. e141945. https://doi.org/10.1016/j.scitotenv.2020.141945
- Ibarra-Morales D., Silva-Aguilera R.A., Oseguera L.A. et al. 2022. Impacts of global change on two tropical, high mountain lakes in Central Mexico // Sci. Total Environ. V. 852. e158521. https://doi.org/10.1016/j.scitotenv.2022.158521
- Jiang Y., Guo J., Haisa A. et al. 2022.Genome-wide association analysis of heat tolerance in the northern pike (Esox lucius) // Aquaculture. V. 559. e738459. https://doi.org/10.1016/j.aquaculture.2022.738459
- Kincaid D.W., Lara N.A.H., Tiegs S.D. et al. 2019. Decomposition in flocculent sediments of shallow freshwaters and its sensitivity to warming // Freshwater Sci. V. 38(4). P. 899. https://doi.org/10.1086/706184
- Lazare S., Vitoshkin H., Alchanatis V. et al. 2022. Canopy-cooling systems applied on avocado trees to mitigate heatwaves damages // Sci. Rep. V. 12(1). e12563. https://doi.org/10.1038/s41598-022-16839-3
- Li S., Liu Y., Li B. et al. 2022. Physiological responses to heat stress in the liver of rainbow trout (Oncorhynchus mykiss) revealed by UPLC-QTOF-MS metabolomics and biochemical assays // Ecotoxicol. Environ. Safety. V. 242. e113949. https://doi.org/10.1016/j.ecoenv.2022.113949
- Li A.J., Zhou G.-J., Lai R.W.S. et al. 2022. Extreme cold or warm events can potentially exacerbate chemical toxicity to the marine medaka fish Oryzias melastigma // Aquat. Toxicol. V. 249. e106226. https://doi.org/10.1016/j.aquatox.2022.106226
- Macêdo R.L., Sousa F.D.R., Dumont H.J. et al. 2022. Climate change and niche unfilling tend to favor range expansion of Moina macrocopa Straus 1820, a potentially invasive cladoceran in temporary waters // Hydrobiology. V. 849. P. 4015. https://doi.org/10.1007/s10750-022-04835-7
- Murdock C.C., Paaijmans K.P., Cox-Foster D. et al. 2012. Rethinking vector immunology: the role of environmental temperature in shaping resistance // Nat. Rev. Microbiol. V. 10. № 12. P. 869. https://doi.org/10.1038/nrmicro2900
- Odum E.P. 1983. Basic Ecology. USA; New York: Harcourt Brace College Publishers.
- Olkova A.S., Kantor G.Y., Kutyavina T.I. et al. 2018. The importance of maintenance conditions of Daphnia magna Straus as a test organism for ecotoxicological analysis // ET&C. V. 37(2). P. 376. https://doi.org/10.1002/etc.3956
- O’Neill E.A., Rowan N.J., Fogarty A.M. 2019. Novel use of the alga Pseudokirchneriella subcapitata, as an early-warning indicator to identify climate change ambiguity in aquatic environments using freshwater finfish farming as a case study // Sci. Total Environ. V. 692. P. 209. https://doi.org/10.1016/j.scitotenv.2019.07.243
- Polst B.H., Hilt S., Stibor H. et al. 2022. Warming lowers critical thresholds for multiple stressor–induced shifts between aquatic primary producers // Sci. Total Environ. V. 83810. e156511. https://doi.org/10.1016/j.scitotenv.2022.156511
- Qiu S., Yu Q., Niu T. еt al. 2022. Restoration and renewal of ecological spatial network in mining cities for the purpose of enhancing carbon Sinks: the case of Xuzhou, China // Ecol. Indic. V. 143. e109313. https://doi.org/10.1016/j.ecolind.2022.109313
- Resende A.C., Mauro Carneiro Pereira D., Cristina Schleger I. et al. 2022. Effects of heat shock on energy metabolism and antioxidant defence in a tropical fish species Psalidodon bifasciatus // J. Fish Biol. V. 100(5). P. 1245. https://doi.org/10.1111/jfb.15036
- Rolton A., Rhodes L., Hutson K.S. et al. 2022. Effects of harmful algal blooms on fish and shellfish species: a case study of New Zealand in a changing environment // Toxins. V. 14(5). e341. https://doi.org/10.3390/toxins14050341
- Rusanov A.G., Bíró T., Kiss K.T. et al. 2022. Relative importance of climate and spatial processes in shaping species composition, functional structure and beta diversity of phytoplankton in a large river // Sci. Total Environ. V. 807. e150891. https://doi.org/10.1016/j.scitotenv.2021.150891
- Shahjahan Md., Islam, Md. J., Hossain Md T. et al. 2022. Blood biomarkers as diagnostic tools: An overview of climate-driven stress responses in fish // Sci. Total Environ. V. 84315. e156910. https://doi.org/10.1016/j.scitotenv.2022.156910
- Sun F., Hu W., Cao J. et al. 2022. Sustained and intensified lacustrine methane cycling during Early Permian climate warming // Nat. Commun. V. 13(1). e4856. https://doi.org/10.1038/s41467-022-32438-2
- Vieira H.C., Bordalo M.D., Rodrigues A.C.M. et al. 2021.Water temperature modulates mercury accumulation and oxidative stress status of common goby (Pomatoschistus microps) // Environ. V. 193. e110585. https://doi.org/10.1016/j.envres.2020.110585
- Vijayaraj V., Laviale M., Allen J. et al. 2022. Multiple-stressor exposure of aquatic food webs: Nitrate and warming modulate the effect of pesticides // Water Res. V. 2161. e118325. https://doi.org/10.1016/j.watres.2022.118325
- Wang F.I., Ding G., Ng G.S. et al. 2022. Luciferase-based GloSensor™ cAMP assay: temperature optimization and application to cell-based kinetic studies // Methods. V. 203. P. 249. https://doi.org/10.1016/j.ymeth.2021.10.009
- Wang Z., Liu R., Zhang L. et al. 2022. Thermoregulation of Eremias argus alters temperature-dependent toxicity of beta-cyfluthrin: ecotoxicological effects considering ectotherm behavior traits // Environ. Pollut. V. 293. e118461. https://doi.org/10.1016/j.envpol.2021.118461
- Yang X., Tong G., Dong L. et al. 2022. Evaluation of qPCR reference genes for taimen (Hucho taimen) under heat stress // Sci. Reports. V. 12. № 1. P. 1. https://doi.org/10.1038/s41598-021-03872-x
- Zhang P., Wang T., Zhang H. et al. 2022. Heat waves rather than continuous warming exacerbate impacts of nutrient loading and herbicides on aquatic ecosystems // Environ Int. V. 168. e10747. https://doi.org/10.1016/j.envint.2022.107478
补充文件
