Isolation, Identification and Characterization of the Algicidal Micromycete Penicillium chrysogenum SR–1.3
- Autores: Medvedeva N.G.1, Zaytseva T.B.1, Kuzikova I.L.1, Timofeeva O.G.1, Chernov I.S.1
-
Afiliações:
- St. Petersburg Federal Research Center of the Russian Academy of Sciences, Scientific Research Centre for Ecological Safety of the Russian Academy of Sciences
- Edição: Volume 17, Nº 3 (2024)
- Páginas: 458-468
- Seção: ВОДНАЯ ТОКСИКОЛОГИЯ
- URL: https://journals.rcsi.science/0320-9652/article/view/266949
- DOI: https://doi.org/10.31857/S0320965224030103
- EDN: https://elibrary.ru/ZPFWIG
- ID: 266949
Citar
Resumo
A novel strain SR–1.3 with algicidal properties and the ability to remove microcystin-LR was isolated from the water of Lake Sestroretskij Razliv during the active cyanobacteria vegetation. Based on the morphological and cultural characteristics and the results of sequencing of the ITS DNA region strain SR–1.3 was identified as Penicillium chrysogenum. The SR–1.3 strain exhibited algicidal activity against cyanobacteria and green algae. A dose-dependent and species-specific nature of the algicidal action of the P. chrysogenum SR–1.3 strain has been established. Cyanobacteria showed the highest sensitivity to strain SR–1.3. The complete lysis (100%) of cyanobacteria cells was observed when 10% (vol.) of the culture liquid or the micromycete filtrate were added to the medium. The algicidal effect of strain SR–1.3 on green algae was 30–70%, depending on the culture. According to the level of sensitivity to the algicidal effect SR–1.3, the test cultures can be arranged in the series Planktothrix agardhii > Microcystis aeruginosa > Aphanizomenon flos-aquae = Anabaena cylindrica > Scenedesmus quadricauda > Oocystis parva. The inhibitory effect of the strain SR-1.3 mycelium on the cyanobacteria and green algae growth did not exceed 3–6%. Based on the obtained results a conclusion was made about the indirect mechanism of the algicidal action of P. chrysogenum SR–1.3 by excretion into the medium of metabolites that inhibit and/or lyse cells of cyanobacteria and green algae. When toxigenic strains of M. aeruginosa and P. agardhii were cultivated on a medium containing exometabolites of strain SR–1.3, the concentrations of microcystins in the medium decreased by 3.3 and 1.8 times, respectively, compared with control variants. The ability of P. chrysogenum SR–1.3 to remove highly toxic microcystin-LR from the cultivation medium was revealed. The MC-LR content was found to decrease from 1.2 μg/ml to 0.79 μg/ml over 48 hours during the cultivation of strain SR–1.3 on medium with microcystin.
Palavras-chave
Texto integral

Sobre autores
N. Medvedeva
St. Petersburg Federal Research Center of the Russian Academy of Sciences, Scientific Research Centre for Ecological Safety of the Russian Academy of Sciences
Autor responsável pela correspondência
Email: ngmedvedeva@gmail.com
Rússia, St. Petersburg
T. Zaytseva
St. Petersburg Federal Research Center of the Russian Academy of Sciences, Scientific Research Centre for Ecological Safety of the Russian Academy of Sciences
Email: ngmedvedeva@gmail.com
Rússia, St. Petersburg
I. Kuzikova
St. Petersburg Federal Research Center of the Russian Academy of Sciences, Scientific Research Centre for Ecological Safety of the Russian Academy of Sciences
Email: ngmedvedeva@gmail.com
Rússia, St. Petersburg
O. Timofeeva
St. Petersburg Federal Research Center of the Russian Academy of Sciences, Scientific Research Centre for Ecological Safety of the Russian Academy of Sciences
Email: ngmedvedeva@gmail.com
Rússia, St. Petersburg
I. Chernov
St. Petersburg Federal Research Center of the Russian Academy of Sciences, Scientific Research Centre for Ecological Safety of the Russian Academy of Sciences
Email: ngmedvedeva@gmail.com
Rússia, St. Petersburg
Bibliografia
- Воякина Е.Ю., Русских Я.В., Чернова Е.Н., Жаковская З.А. 2020. Токсичные цианобактерии и их метаболиты в водоемах Северо-Запада России // Теоретическая и прикладная экология. Т. 1. С. 124.
- Зайцева Т.Б., Медведева Н.Г. 2022. Влияние биогенных элементов на рост нитчатых цианобактерий — возбудителей “цветения” воды — и синтез ими метаболитов // Биология внутр. вод. № 3. С. 290. https://doi.org/10.31857/S0320965222030196
- Медведева Н.Г., Зайцева Т.Б., Кузикова И.Л., Чернова Е.Н. 2023. Биодеструкция микроцистина–LR автохтонной микробиотой разнотипных водных объектов Северо-Запада России // Изв. РАН. Серия биол. № 3. С. 687. https://doi.org/10.31857/S1026347022600820
- Chernova E., Russkikh I., Voyakina E., Zhakovskaya Z. 2016. Occurrence of microcystins and anatoxin-a in eutrophic lakes of Saint Petersburg, Northwestern Russia // Oceanol. Hydrobiol. V. 45. № 4. https://doi.org/10.1515/ohs-2016-0040
- Chorus I., Bartram J. 1999. Toxic cyanobacteria: a guide to their public health consequences monitoring and management. London: CRC Press.
- Christoffersen K., Lyck S., Winding A. 2002. Microbial activity and bacterial community structure during degradation of microcystins // Aquat. Microb. Ecol. V. 27. № 2. P. 125. https://doi.org/10.3354/ame027125
- Cyanobacterial toxins: microcystins. 2020. Background document for development of WHO Guidelines for drinking-water quality and Guidelines for safe recreational water environments. Geneva: World Health Organization 2020 (WHO/HEP/ECH/WSH/2020.6). Licence: CC BY-NCSA 3.0 IGO.
- Dai W., Chen X., Wang X. et al. 2018. The Algicidal fungus Trametes versicolor F21a eliminating blue algae via genes encoding degradation enzymes and metabolic pathways revealed by transcriptomic analysis // Front Microbiol. V. 9. P. 826. https://doi.org/10.3389/fmicb.2018.00826
- Dziga D., Maksylewicz A., Maroszek M. et al. 2017. The biodegradation of microcystins in temperate freshwater bodies with previous cyanobacterial history // Ecotoxicol. Environ. Saf. V. 145. P. 420. https://doi.org/10.1016/j.ecoenv.2017.07.046
- Esterhuizen-Londt M., Hertel S., Pflugmacher S. 2017. Uptake and biotransformation of pure commercial microcystin-LR versus microcystin-LR from a natural cyanobacterial bloom extract in the aquatic fungus Mucor hiemalis // Biotechnol. Lett. V. 39. № 10. P. 1537. https://doi.org/10.1007/s10529-017-2378-2
- Jeffrey S.W., Humprhråy G.E. 1975. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton // Biochim. and Physiol. Pflanz. Bd. V. 167. № 2. P. 191. https://doi.org/10.1016/s0015-3796(17)30778-3
- Jia Y., Du, J., Song F. et al. 2012. A fungus capable of degrading microcystin-LR in the algal culture of Microcystis aeruginosa PCC7806 // Appl. Biochem. Biotechnol. V. 166. № 4. P. 987. https://doi.org/10.1007/s12010-011-9486-6
- Jia Y., Han G., Wang C. et al. 2010. The efficacy and mechanisms of fungal suppression of freshwater harmful algal bloom species // J. Hazard. Mater. V. 183. № 1–3. P. 176. https://doi.org/10.1016/j.jhazmat.2010.07.009
- Jia Y., Wang C., Zhao G. et al. 2011. The possibility of using cyanobacterial bloom materials as a medium for white rot fungi // Lett. Appl. Microbiol. V. 54. № 2. P. 96. https://doi.org/10.1111/j.1472-765x.2011.03178.x
- Han G., Feng X., Jia Y. et al. 2011. Isolation and evaluation of terrestrial fungi with algicidal ability from Zijin Mountain, Nanjing, China // J. Microbiol. V. 49. № 4. P. 562. https://doi.org/10.1007/s12275-011-0496-4
- Han G., Ma H., Ren S. et al. 2020. Insights into the mechanism of cyanobacteria removal by the algicidal fungi Bjerkandera adusta and Trametes versicolor // Microbiol. Open. https://doi.org/10.1002/mbo3.1042
- Han S., Zhou Q., Lilje O. et al. 2021. Inhibition mechanism of Penicillium chrysogenum on Microcystis aeruginosa in aquaculture water // J. Clean. Prod. V. 299. Article 126829. https://doi.org/10.1016/j.jclepro.2021.126829
- Kong Y., Wang Y., Miao L. et al. 2022. Recent Advances in the Research on the Anticyanobacterial Effects and Biodegradation Mechanisms of Microcystis aeruginosa with Microorganisms // Microorganisms. V. 10. Article 1136. https://doi.org/10.3390/microorganisms10061136
- Koreivienė J., Belous O., Kasperovičienė J. 2013. Variations of microcystins in freshwater ecosystems // Bot. Lith. V. 19(2). P. 139. https://doi.org/10.2478/botlit-2013-0017
- Kumar S., Stecher G., Li M. et al. 2018. MEGA X: Molecular evolutionary genetics analysis across computing platforms // Mol. Biol. Evol. V. 35. № 6. P. 1547. https:///
- Kuzikova I., Safronova V., Zaytseva T., Medvedeva N. 2017. Fate and effects of nonylphenol in the filamentous fungus Penicillium expansum isolated from the bottom sediments of the Gulf of Finland // J. Mar. Syst. V. 171. P. 111 https://doi.org/10.1016/j.jmarsys.2016.06.003
- Kuzikova I., Zaytseva T., Chernova E. et al. 2023. Algicidal activity and microcystin-LR destruction by a novel strain Penicillium sp. GF3 isolated from the Gulf of Finland (Baltic Sea) // Toxins. V. 15. P. 607. https://doi.org/10.3390/ toxins15100607
- Lezcano M.Á., Quesada A., El-Shehawy R. 2018. Seasonal dynamics of microcystin-degrading bacteria and toxic cyanobacterial blooms: interaction and influence of abiotic factors // Harmful Algae. V. 71. P. 19. https://doi.org/10.1016/j.hal.2017.11.002
- Li J., Li R., Li J. 2017. Current research scenario for microcystins biodegradation — a review on fundamental knowledge, application prospects and challenges // Sci. Total Environ. V. 595. P. 615. https://doi.org/10.1016/j.scitotenv.2017.03.285
- Massey I.Y., Yang F.A. 2020. Mini review on microcystins and bacterial degradation // Toxins. V. 12(4). P. 268. https://doi.org/10.3390/toxins12040268
- Medvedeva N.G., Kuzikova I.L. 2021. Microcystin-LR degradation by indigenous bacterial community of Rybinsk reservoir // IOP Conference Ser. “Earth and Environmental Science”. V. 834. № 1. Article 012066. https://doi.org/10.1088/1755-1315/834/1/012066
- Mohamed Z.A., Alamri S., Hashem M., Mostafa Y. 2020. Growth inhibition of Microcystis aeruginosa and adsorption of microcystin toxin by the yeast Aureobasidium pullulans, with no effect on microalgae // Environ. Sci. Pollut. Res. https://doi.org/10.1007/s11356-020-09902-x
- Mohamed Z.A., Hashem M., Alamri S.A. 2014. Growth inhibition of the cyanobacterium Microcystis aeruginosa and degradation of its microcystin toxins by the fungus Trichoderma citrinoviride // Toxicon. V. 86. P. 51. https://doi.org/10.1016/j.toxicon.2014.05.008
- Mohamed Z.A., Hashem M., Alamri S. et al. 2021. Fungal biodegradation and removal of cyanobacteria and microcystins: potential applications and research needs // Environ. Sci. Pollut. Res. V. 28. № 28. P. 37041. https://doi.org/10.1007/s11356-021-14623-w
- Rastogi R.P., Sinha R.P., Incharoensakdi A. 2014. The cyanotoxin-microcystins: current overview // Rev. Environ. Sci. Biotechnol. V. 13. P. 215. https://doi.org/10.1007/s11157-014-9334-6
- Redhead K., Wright S.J. 1978. Isolation and properties of fungi that lyse blue-green algae // Appl. Environ. Microbiol. V. 35. № 35. P. 962. https://doi.org/10.1128/AEM.35.5.962-969.1978
- Sutton D.A., Fothergill A.W., Rinaldi M.G. 1998. Guide to clinically significant fungi. Baltimore: Williams & Wilkins.
- Wang Q., Su M., Zhu W. et al. 2010. Growth inhibition of Microcystis aeruginosa by white-rot fungus Lopharia spadicea // Water Sci. Technol. V. 62. № 2. P. 317. https://doi.org/10.2166/wst.2010.214
- Zeng G., Gao P., Wang J. et al. 2020. Algicidal Molecular Mechanism and Toxicological Degradation of Microcystis aeruginosa by White-Rot Fungi // Toxins. V. 12(6). P. 406. https://doi.org/10.3390/toxins12060406
- Zeng G., Wang P., Wang Y. 2015. Algicidal efficiency and mechanism of Phanerochaete chrysosporium against harmful algal bloom species // Algal Res. V. 12. P. 182. https://doi.org/10.1016/j.algal.2015.08.019
- Zhang Y., Xie H.F. 2012. Study on biodegradation of microcystin-LR by white-rot fungus S. commune // Environ. Pollut. Control J. V. 34. P. 56.
- Zhou C., Chen H., Zhao H., Wan Q. 2021. Microcystin biosynthesis and toxic effects // Algal. Res. V. 55. Article 102277. https://doi.org/10.1016/j.algal.2021.102277
Arquivos suplementares
