Influence of Microplastics on the Nutritional and Locomotive Activity of Dinoflagellate Oxyrrhis marina in the Experiment

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The incorporation of microplastic particles (MPs) into the microbial food chain and their impact on physiology of consuming organisms has been largely underexplored. The heterotrophic dinoflagellate Oxyrrhis marina serves as a good model for understanding these processes. In this work, flow cytometry methods were used to analyze the dynamics of consumption by this predator of its natural prey, the microalga Isochrysis galbana (ISO), and plastic microspheres (MS) of the same size. In addition, the effect of the diets containing these components on the swimming speed and movement patterns of Oxyrrhis marina cells was evaluated using a computer method for analyzing video recordings of O. marina movement. It was shown that from the first minutes of the experiment, the dinoflagellates actively consumed both the preys, but by the end of the experiment, the number of MS in the medium decreased to a lesser extent, from 4.4 to 2.2 · 105/mL, while Isochrysis galbana cells were almost completely grazed, and their abundance decreased by more than two orders of magnitude, from 4.9 · 105 cells/mL to 2.3 · 103 cells/mL. Such dynamics were associated with compensation for the number of microspheres in the medium due to their excretion and repeated phagocytosis by Oxyrrhis marina. The increase in the size of dinoflagellate cells, which was a consequence of the consumption of plastic microspheres, did not lead to a noticeable decrease in their mobility and impaired locomotion. ‘Unproductive’ feeding of the dinoflagellates on microplastics did not supply them with nutrients and was the reason for a statistically significant decrease in their abundance (compared to the control and experiment with microalgae). This seemed to be due to the unreasonably high energy consumption of their population for constant search, phagocytosis, and excretion of microspheres. There were no signs of the predator’s rejection of such an unproductive nutrition strategy; on the contrary, cell mobility increased over time, which only worsened the situation. Such processes can have far-reaching negative consequences for the entire food chain. In particular, microplastics “packaged” by unicellular organisms can be transported to higher trophic levels and accumulate in mollusks, fish, and larger predators.

Full Text

Restricted Access

About the authors

T. V. Rauen

A. O. Kovalevsky Institute of Biology of the Southern Seas of Russian Academy of Sciences

Author for correspondence.
Email: taschi@mail.ru
Russian Federation, Sevastopol

V. S. Mukhanov

A. O. Kovalevsky Institute of Biology of the Southern Seas of Russian Academy of Sciences

Email: taschi@mail.ru
Russian Federation, Sevastopol

Iu. S. Baiandina

A. O. Kovalevsky Institute of Biology of the Southern Seas of Russian Academy of Sciences

Email: taschi@mail.ru
Russian Federation, Sevastopol

A. M. Lyakh

A. O. Kovalevsky Institute of Biology of the Southern Seas of Russian Academy of Sciences

Email: taschi@mail.ru
Russian Federation, Sevastopol

References

  1. Стельмах Л.В., Мансурова И.М. 2021. Физиологический механизм выживания динофитовых водорослей в условиях биогенного лимитирования // Биология внутр. вод. № 2. С. 198. https://doi.org/10.31857/S0320965221020157
  2. Ханайченко А.Н., Битюкова Ю.Е. 1999. Избирательность питания личинок калкана и выбор стратегии их кормления // Экология моря. № 48. C. 63.
  3. Ateia M., Zheng T., Calace S. et al. 2020. Sorption behavior of real microplastics (MPs): Insights for organic micropollutants adsorption on a large set of well-characterized MPs // Sci. Total Environ. V. 720. P. 137634. https://doi.org/10.1016/j.scitotenv.2020.137634
  4. Athey S.N., Albotra S.D., Gordon C.A. et al. 2020. Trophic transfer of microplastics in an estuarine food chain and the effects of a sorbed legacy pollutant // Limnol., Oceanogr. V. 5. P. 154. https://doi.org/10.1002/lol2.10130
  5. Baiandina I.S., Khanaychenko A.N. 2019. Optimization of the method for determining the motility characteristics of fish spermatozoa using ImageJ Software and Excel Macros // J. Ichthyol. V. 59. № 1. P. 127. https://doi.org/.org/10.1134/S0032945219010016
  6. Barboza L.G.A., Vieira L.R., Guilhermino L. 2018. Single and combined effects of microplastics and mercury on juveniles of the European seabass (Dicentrarchus labrax): changes in behavioural responses and reduction of swimming velocity and resistance time // Environ. Pollut. V. 236. P. 1014. https://doi.org/10.1016/j.envpol.2017.12.082
  7. Barnes D.K.A., Galgani F., Thompson R.C., Barlaz M. 2009. Accumulation and fragmentation of plastic debris in global environments // Philosophical Transactions of the Royal Society. A. V. 364. P. 1985. https://doi.org/10.1098/rstb.2008.0205
  8. Beaumont N.J., Aanesen M., Austen M.C. 2019. Global ecological, social and economic impacts of marine plastic // Mar. Pollut. Bull. V. 142. P. 189. https://doi.org/10.1016/j.marpolbul.2019.03.022
  9. Bermúdez J.R., Metian M., Oberhänsli F., Taylor A. 2021. Preferential grazing and repackaging of small polyethylene microplastic particles (≤5 μm) by the ciliate Sterkiella sр. // Mar. Environ. Res. V. 166. P. 105260. https://doi.org/10.1016/j.marenvres.2021.105260
  10. Botterell Z.L., Beaumont N., Dorrington T. et al. 2019. Bioavailability and effects of microplastics on marine zooplankton: a review // Environ. Pollut. V. 245. P. 98. https://doi.org/10.1016/j.envpol.2018.10.065
  11. Calbet A. 2008. The trophic roles of microzooplankton in marine systems // ICES J. Mar. Sci. V. 65. P. 325. https://doi.org/.org/10.1093/icesjms/fsn013
  12. Carbery M., O’Connor W., Palanisami T. 2018. Trophic transfer of microplastics and mixed contaminants in the marine food web and implications for human health // Environ. International. V. 115. P. 400. https://doi.org/10.1016/j.envint.2018.03.007
  13. Chubarenko I., Efimova I., Bagaeva M. et al. 2020. On mechanical fragmentation of single-use plastics in the sea swash zone with different types of bottom sediments: Insights from laboratory experiments // Mar. Pollut. Bull. V. 150. P. 110726. https://doi.org/10.1016/j.marpolbul.2019.110726
  14. Cole M., Lindeque P., Fileman E. et al. 2013. Microplastic Ingestion by Zooplankton // Environ. Sci. Technol. V. 47. № 12. P. 6646. https://doi.org/10.1021/es400663f
  15. Cooper D.A., Corcoran P.L. 2010. Effects of mechanical and chemical processes on the degradation of plastic beach debris on the island of Kauai, Hawaii // Mar. Pollut. Bull. V. 60. № 5. P. 650. https://doi.org/10.1016/j.marpolbul.2009.12.026
  16. Coutteau P. 1996. Micro-Algae. Manual on the production and use of live food for aquaculture. Rome.
  17. Desforges J.P.W., Galbraith M., Ross P.S. 2015. Ingestion of microplastics by zooplankton in the Northeast Pacific Ocean // Arch. Environ. Contam. Toxicol. V. 69. № 3. P. 320. https://doi.org/.org/10.1007/s00244-015-0172-5
  18. Deuer S.M., Grünbaum D. 2006. Individual foraging behaviors and population distributions of a planktonic predator aggregating to phytoplankton thin layers // Limnol., Oceanogr. V. 51. P. 109. https://doi.org/.org/10.4319/lo.2006.51.1.0109
  19. Egbeocha C.O., Malek S., Emenike C.U., Milow P. 2018. Feasting on microplastics ingestion by and effects on marine organisms // Aquat. Biol. V. 27. P. 93. https://doi.org/10.3354/ab00701
  20. Fulfer V.M., Menden-Deuer S. 2021. Heterotrophic dinoflagellate growth and grazing rates reduced by microplastic ingestion // Frontiers in Marine Science. P. 1044. https://doi.org/10.3389/fmars.2021.716349
  21. Galloway T.S., Cole M., Lewis C. 2017. Interactions of microplastic debris throughout the marine ecosystem // Nature Ecol. Evol. V. 1. № 5. P. 1. https://doi.org/.org/10.1038/s41559-017-0116
  22. Hansen P.J. 1991. Quantitative importance and trophic role of heterotrophic dinoflagellates in a coastal pelagial food web // Mar. Ecol.: Prog. Ser. V. 73. № 2–3. P. 253.
  23. Kim S.W., An Y.J. 2020. Edible size of polyethylene microplastics and their effects on springtail behavior // Environ. Pollut. V. 266. P. 115255. https://doi.org/10.1016/j.envpol.2020.115255
  24. Kukulka T., Proskurowski G., Morét Ferguson S. et al. 2012. The effect of wind mixing on the vertical distribution of buoyant plastic debris // Geoph. Res. Letters. V. 39(7). https://doi.org/10.1029/2012gl051116
  25. Law K.L., Narayan R. 2022. Reducing environmental plastic pollution by designing polymer materials for managed end-of-life // Nat. ReV. Mater. V. 7. № 2. P. 104. https://doi.org/
  26. Lomonaco T., Manco E., Corti A. 2020. Release of harmful volatile organic compounds (VOCs) from photo-degraded plastic debris: a neglected source of environmental pollution // J. Hazardous Mater. V. 394. P. 122596. https://doi.org/
  27. Lyakurwa D.J. 2017. Uptake and effects of microplastic particles in selected marine microalgae species; Oxyrrhis marina and Rhodomonas baltica. PhD thesis. Norwegian University of Science and Technol. P. 51.
  28. Maes T., McGlade J., Fahim I.S. 2021. From Pollution to Solution: a global assessment of marine litter and plastic pollution.
  29. Montagnes D.J., Lowe C.D., Roberts E.C. et. al. 2011. An introduction to the special issue: Oxyrrhis marina, a model organism? // J. Plankton Res. V. 33. № 34. P. 549. https://doi.org/.org/10.1093/plankt/fbq121
  30. Naik R.K., Naik M.M., D’Costa P.M., Shaikh F. 2019. Microplastics in ballast water as an emerging source and vector for harmful chemicals, antibiotics, metals, bacterial pathogens and HAB species: A potential risk to the marine environment and human health // Mar. Pollut. Bull. V. 149. P. 110525. https://doi.org/.org/10.1016/j.marpolbul.2019.110525
  31. Nussbaum-Krammer C.I., Neto M.F., Brielmann R.M et al. 2015. Investigating the spreading and toxicity of prion-like proteins using the metazoan model organism C. elegans // JoVE (J. Visual. ExP. № 95. P. e52321 https://doi.org/10.3791/52321
  32. Prata J.C., Silva A.L., Walker T.R. et al. 2020. COVID-19 pandemic repercussions on the use and management of plastics // Environ. Sci. Technol. V. 54. № 13. P. 7760. https://doi.org/.org/10.1021/acs.est.0c02178
  33. Rauen T.V., Mukhanov V.S., Aganesova L.O. 2023. Ingestion of microplastics by the heterotrophic dinoflagellate Oxyrrhis marina // Mar. Biol. J., V. 8, № 1. P. 64. https://doi.org/.org/10.21072/mbj.2023.08.1.06
  34. Rehse S., Kloas W., Zarfl C. 2016. Short-term exposure with high concentrations of pristine microplastic particles leads to immobilisation of Daphnia magna // Chemosphere. V. 153. P. 91. https://doi.org/10.1016/j.chemosphere.2016.02.133
  35. Rillig M.C., Bonkowski M. 2018. Microplastic and soil protists: a call for research // Environ. Pollut. V. 241. P. 1128. https://doi.org/10.1016/j.envpol.2018.04.147
  36. Roberts E.C., Wootton E.C., Davidson K. et al. 2011. Feeding in the dinoflagellate Oxyrrhis marina: linking behaviour with mechanisms // J. Plankton Res. V. 33. 4. P. 603. https://doi.org/10.1093/plankt/fbq118
  37. Sherr E.B., Sherr B.F. 2002. Significance of predation by protists in aquatic microbial food webs // Antonie Van Leeuwenhoek. V. 81. № 1. P. 293. https://doi.org/.org/10.1023/a:1020591307260
  38. Silva A.L.P., Prata J.C., Walker T.R. et al. 2021. Increased plastic pollution due to COVID-19 pandemic: Challenges and recommendations // Chem. Engineering J. V. 405. P. 126683. https://doi.org/10.1016/j.cej.2020.126683
  39. Steinberg D.K., Landry M.R. 2017. Zooplankton and the ocean carbon cycle // Annual review of marine science. V. 9. № 1. P. 413. https://doi.org/.org/10.1146/annurev-marine- 010814-015924
  40. Stottrup J.G., Richardson K., Kirkegaard E. et al. 1986. The cultivation of Acartia tonsa Dana for use as a live food source for marine fish larvae // Aquaculture. V. 52. № 2. P. 87.
  41. Sussarellu R., Suquet M., Thomas Y. et al. 2016. Oyster reproduction is affected by exposure to polystyrene microplastics // Proceedings of the National Academy of Sciences. V. 113. № 9. P. 2430. https://doi.org/10.1073/pnas.1519019113
  42. Thompson R.C., Olsen Y., Mitchell R.P. et al. 2004. Lost at sea: where is all the plastic? // Science. V. 304. P. 838.
  43. Welden N.A., Cowie P.R. 2016. Long-term microplastic retention causes reduced body condition in the langoustine, Nephrops norvegicus // Environ. Pollut. V. 218. P. 895. https://doi.org/10.1016/j.envpol.2016.08.020
  44. Wu F., Wang. et al. 2020. Accumulation of microplastics in typical commercial aquatic species: A case study at a productive aquaculture site in China // Sci. Total Environ. V. 708. P. 1.
  45. Zhang J., Li C., Chen X. et al. 2022. Paramecium bursaria as a Potential Tool for Evaluation of Microplastics Toxicity // Biology. V. 11. № 12. P. 1852. https://doi.org/10.3390/biology11121852

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Рис. 1. Схема приготовления экспериментальных суспензий в контроле (CNRL) и опытах с микроводорослями I. galbana (ISO) и пластиковыми микросферами (MS) из следующих компонентов: m — питательной среды, O.m. — маточной культуры динофлагелляты O. marina, I.g. — маточной культуры I. galbana, ms — суспензии пластиковых микросфер.

Download (115KB)
3. Рис. 2. Графики для расчета общей численности (метод гейтинга) гетеротрофной динофлагелляты O. marina (OXY) и ее кормовых объектов — микросфер (MS) и гаптофитовой микроводоросли I. galbana (ISO) на 2-параметрических цитограммах прямого светорассеивания (FS) и флуоресценции в красной (FL4, 675 нм; слева) и зеленой (FL1, 525 нм; справа) областях спектра. OXY* – клетки динофлагеллят, потребляющие I. galbana и микросферы, OXY** – клетки динофлагеллят с микросферами в пищевых вакуолях (Rauen, 2023).

Download (151KB)
4. Рис. 3. Клетки динофлагелляты O. marina с одной (а, б) и несколькими (в–е) МS в пищеварительных вакуолях в светлом поле (а, г) и эпифлуоресцентном режиме (б, в, д, е) (Rauen, 2023).

Download (245KB)
5. Рис. 4. Трекинг движения динофлагеллят в программе ImageJ (а), набор треков, полученный в одном из экспериментов (б), и схема определения коэффициента спрямленности траектории движения O. marina (в). Обозначения L и l приведены в тексте.

Download (234KB)
6. Рис. 5. Динамика численности динофлагеллят O. marina (а), микроводорослей I. galbana (ISO) и пластиковых микросфер (MS) (б), доли клеток O. marina с микросферами в пищеварительных вакуолях (б) (OXY*) и средних размеров (ESD) клеток O. marina (в), в контроле (CNRL), при питании микроводорослями (ISO) и микросферами (MS). Вариабельность представлена границами стандартного отклонения.

Download (160KB)
7. Рис. 6. Средние скорости движения клеток (а), доля подвижных клеток (б) и коэффициент спрямленности траекторий движения (в) динофлагеллят O. marina в экспериментальных сосудах с добавлением I. galbana (ISO), пластиковых микросфер (MS) и в контроле (CNRL) в начале эксперимента, через два и шесть часов. Показаны медианы, процентили 25–75% и 5–95%. Точки обозначают выбросы, дуги соединяют статистически не отличающиеся наборы значений, измеренные в одинаковые минуты эксперимента.

Download (277KB)

Copyright (c) 2024 The Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies