Relationship of Size and Mass Characteristics, Indicators of Metabolism and Mercury Concentration in Muscle Tissue of Freshwater Fish from Tropical Vietnam

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The main chemical composition and content of mercury in the muscles of freshwater fish species Xenentodon cancila, Notopterus notopterus, Anabas testudineus, Channa striata, Ch. gachua, Clarias batrachus from the rivers of the Cai South Vietnam, and their body sizes, was studied. A trend of more intensive accumulation of mercury, protein and fat in the muscle tissue of females compared to males was revealed. A significant relationship between the content of mercury and body size, as well as the content of mercury and the proportion of protein in the muscles, was not established in most of the studied individuals. Trophic patterns of mercury accumulation in fish muscles were confirmed: its content increased from euryphages to zoophages (facultative predators). An exception is the euryphage Clarias batrachus, which surpassed many facultative predators in mercury content. It is shown that individuals of the same species living in the biotopes of the Kai River with different hydrodynamic and hydrochemical conditions differ in weight, length, content of protein, fat and mercury in muscle tissue.

Full Text

Restricted Access

About the authors

A. A. Payuta

P. G. Demidov Yaroslavl State University

Email: katarinum@mail.ru
Russian Federation, Yaroslavl

E. A. Flerova

P. G. Demidov Yaroslavl State University

Author for correspondence.
Email: katarinum@mail.ru
Russian Federation, Yaroslavl

D. A. Guldina

P. G. Demidov Yaroslavl State University

Email: katarinum@mail.ru
Russian Federation, Yaroslavl

A. S. Kliuchnikov

Yaroslavl State Technical University

Email: katarinum@mail.ru
Russian Federation, Yaroslavl

V. T. Komov

Papanin Institute for Biology of Inland Waters Russian Academy of Sciences

Email: katarinum@mail.ru
Russian Federation, Borok, Nekouzskii raion, Yaroslavl oblast

N. V. Lobus

Timiryazev Institute of Plant Physiology Russian Academy of Sciences

Email: katarinum@mail.ru
Russian Federation, Moscow

References

  1. Костоусов В.Г., Адамович Б.В., Жукова А.А. и др. 2019. Об определении допустимого изъятия рыбной продукции в зависимости от продукционных характеристик водоемов // Вестн. рыбохоз. науки. Т. 6. № 4. С. 51.
  2. Лобус Н.В. 2012. Содержание ртути в донных отложениях водоемов Южного Вьетнама // Токсикол. вестн. № 2. С. 41.
  3. Мирошниченко Д.А., Флерова Е.А. 2018. Опыт выращивания радужной форели в условиях высокогорья Южного Вьетнама: показатели роста и химический состав скелетных мышц // Тр. ВНИРО. Т. 170. С. 116.
  4. Немова Н.Н. 2005. Биохимические эффекты накопления ртути у рыбы. М.: Наука.
  5. Немова Н.Н., Лысенко Л.А., Мещерякова О.В., Комов В.Т. 2014. Ртуть в рыбах: биохимическая индикация // Биосфера. Т. 6. № 2. С. 176.
  6. Павлов Д.С., Зворыкин Д.Д. 2014. Миграции пресноводных рыб Вьетнама // Экология внутренних вод Вьетнама. М.: Тов-во науч. изд. КМК. С. 279.
  7. Параскив А. А., Терещенко Н. Н., Проскурнин В. Ю. и др. 2022. Аккумулирующая способность гидробионтов и взвешенного вещества в отношении радиоизотопов плутония в прибрежных акваториях (Севастопольская бухта, Черное море) // Вестн. ТГУ. Биол. № 60. С. 78. https://doi.org/.org/10.17223/19988591/60/5
  8. Самойлов К.Ю., Чан Дык Зьен. 2022. Морфологическая изменчивость и особенности биологии анабаса Anabas testudineus в водных объектах разного типа // Биол. внутр. вод. № 3. С. 212. https://doi.org/.org/10.31857/S0320965222020127
  9. Степанова И.К., Комов В.Т. 2004. Роль трофической структуры экосистемы водоемов Северо-запада России в накоплении ртути в рыбе // Гидробиол. журн. Т. 40. № 2. С. 87.
  10. Столбунов И.А. 2014. Адаптивные комплексы морфологических и поведенческих признаков рыб из лотических и лимнических местообитаний // Экология внутренних вод Вьетнама. М.: Тов-во науч. изд. КМК. С. 371.
  11. Чемагин А.А., Волосников Г.И., Кыров Д.Н., Либерман Е.Л. 2019. Тяжелые металлы Hg, Cd, Pb в организме стерляди (Acipenser ruthenus L.), Нижний Иртыш // Вестн. МГТУ. Т. 22. № 2. С. 225. https://doi.org/.org/10.21443/1560-9278-2019-22-2-225-233
  12. Adams S.M., McLean R.B., Parrotta J.A. 1982. Energy partitioning in largemouth bass under conditions of seasonally fluctuating prey availability // Trans. Am. Fish. Soc. V. 111. № 5. P. 549. https://doi.org/.org/10.1577/1548-8659(1982)111%3C549:EPILBU%3E2.0.CO;2
  13. Ajsuvakova O.P., Tinkov A.A., Aschner M. et al. 2020. Sulfhydryl groups as targets of mercury toxicity // Coord. Chem. ReV. V. 417. P. 213343. https://doi.org/.org/10.1016/j.ccr.2020.213343
  14. Aldhamin A.S., Al-Warid H.S., Al-Moussawi A.A. 2021.Helminths and their fish hosts as bioindicators of heavy metal pollution: A review // Int. J. Aquat. Sci. V. 12. № 2. P. 3401.
  15. Baturin G.N., Lobus N.V., Peresypkin V.I., Komov V.T. 2014. Geochemistry of channel drifts of the Kai River (Vietnam) and sediments of its mouth zone // Oceanology. V. 54. № 6. P. 788. https://doi.org/.org/10.1134/S0001437014050026
  16. Boudou A., Delnomdedieu M., Georgescauld D. et al. 1991. Fundamental roles of biological barriers in mercury accumulation and transfer in freshwater ecosystems (analysis at organism, organ, cell and molecular levels) // Water, Air, Soil Pollut. V. 56. № 1. P. 807. https://doi.org/.org/10.1007/BF00342318
  17. Brabo E.S., Santos E.O., Faial K.D. 2000. Mercury contamination of fish and exposures of an indigenous community in Para State, Brazil // Environ. Res. V. 84. № 3. P. 197.
  18. Burger J., Gochfeld M. 2011. Mercury and selenium levels in 19 species of saltwater fish from New Jersey as a function of species, size, and season // Sci. Total Environ. V. 409. № 8. P. 1418. https://doi.org/.org/10.1016/j.scitotenv.2010.12.034
  19. Calboli F.C., Delahaut V., Deflem I. et al. 2021. Association between Chromosome 4 and mercury accumulation in muscle of the three‐spined stickleback (Gasterosteus aculeatus) // Evol. Appl. V. 14. № 10. P. 2553. https://doi.org/.org/10.1111/eva.13298
  20. Chen C.Y., Lai C.C., Chen K.S. et al. 2014. Total and organic mercury concentrations in the muscles of Pacific albacore (Thunnus alalunga) and bigeye tuna (Thunnus obesus) // Mar. Poll. Bull. V. 85. № 2. P. 606. https://doi.org/.org/10.1016/j.marpolbul.2014.01.039
  21. Crespo-Lopez M.E., Augusto-Oliveira M., Lopes-Araújo A. et al. 2021. Mercury: What can we learn from the Amazon? // Environ. Int. V. 146. P. 106223. https://doi.org/.org/10.1016/j.envint.2020.106223
  22. Diana J.S., Mackay W.C. 1979. Timing and magnitude of energy deposition and loss in the body, liver, and gonads of northern pike (Esox lucius) // J. Fish. Res. Board Can. V. 36. № 5. P. 481. https://doi.org/.org/10.1139/f79-071
  23. Ganguly S., Mahanty A., Mitra T., Mohanty B.P. 2017. Proximate composition and micronutrient profile of different size groups of hilsa Tenualosa ilisha (Hamilton, 1822) from river Ganga // Indian J. Fish. V. 64. P. 62. https://doi.org/.org/10.21077/ijf.2017.64.special-issue.76203-09
  24. Golovanova I.L. 2008. Effects of heavy metals on the physiological and biochemical status of fishes and aquatic invertebrates // Inland Water Biol. V. 1. P. 93. https://doi.org/.org/10.1007/s12212-008-1014-1
  25. Grieb T.M., Bowie G.L., Driscoll C.T. et al. 1990. Factors affecting mercury accumulation in fish in the upper Michigan Peninsula // Environ. Toxicol. and Chem. V. 9. № 7. P. 919. https://doi.org/.org/10.1002/etc.5620090710
  26. Kawabata F., Mizushige T., Uozumi K. et al. 2015. Fish protein intake induces fast-muscle hypertrophy and reduces liver lipids and serum glucose levels in rats // Biosci. Biotechnol. Biochem. V. 79. № 1. P. 109. https://doi.org/.org/10.1080/09168451.2014.951025
  27. Khadse T.A., Gadhikar Y.A. 2017. Histological and ultrastructural study of intestine of Asiatic knife fish, Notopterus notopterus // Int. J. Fish. Aquat. Stud. V. 5. № 1. P. 18-22.
  28. Koukina S.E., Lobus N.V. 2020. Relationship between enrichment, toxicity, and chemical bioavailability of heavy metals in sediments of the Cai River estuary // Environ. Monit. Assess. V. 192. P. 305. https://doi.org/.org/10.1007/s10661-020-08282-6
  29. Koukina S.E., Lobus N.V., Peresypkin V.I. et al. 2017. Abundance, distribution and bioavailability of major and trace elements in surface sediments from the Cai River estuary and Nha Trang Bay (South China Sea, Vietnam) // Estuar. Coast. Shelf. Sci. V. 198. Р. 450. https://doi.org/.org/10.1016/j.ecss.2016.03.005
  30. Kumar P., Prasad Y., Patra A.K., Swarup D. 2007. Levels of cadmium and lead in tissues of freshwater fish (Clarias batrachus L.) and chicken in Western UP (India) // Bull. Environ. Contam. Toxicol. V. 79. P. 396. https://doi.org/.org/10.1007/s00128-007-9263-y
  31. Lange T.R., Royals H.E., Connor L.L. 1994. Mercury accumulation in largemouth bass (Micropterus salmoides) in a Florida Lake // Arch. Environ. Contam. Toxicol. V. 27. № 4. Р. 466. https://doi.org/.org/10.1007/BF00214837
  32. Lima A.P., Muller R.C., Sarkis J.E. et al. 2000. Mercury contamination in fish from Santarem, Para, Brazil // Environ. Res. V. 83. № 2. P. 117. https://doi.org/.org/10.1006/enrs.2000.4051
  33. Lindberg S.E., Bullock R., Ebinhaus R. 2007. Synthesis of progress and uncertainties in attributing the sources of mercury in deposition // AMBIO. V. 36. № 1. P. 19.
  34. Linh V.T.T., Kiem D.T., Ngoc P.H. et al. 2015. Coastal sea water quality of Nha Trang bay, Khanh Hoa, Viet Nam // JSOE. V. 5. № 3. P. 123. https://doi.org/.org/10.17265/2159-5879/2015.03.003
  35. Lloret J., Shulman G.E., Love R.M. 2014. Condition and health indicators of exploited marine fishes. Oxford: Wiley Blackwell.
  36. Lobus N.V., Komov V.T. 2016. Mercury in the muscle tissue of fish in the Central and South Vietnam // Inland Water Biol. V. 9. № 3. P. 319. https://doi.org/.org/10.1134/S1995082916030159
  37. Lobus N.V., Komov V.T., Thanh N.T.H. 2011. Mercury concentration in ecosystem components in water bodies and streams in Khanh Hoa province (Central Vietnam) // Water Res. V. 38. № 6. P. 799. https://doi.org/.org/10.1134/S0097807811060091
  38. Lobus N.V., Peresypkin V.I., Shulga N.A et al. 2015. Dissolved, particulate, and sedimentary organic matter in the Cai River basin (Nha Trang Bay of the South China Sea) // Oceanology. V. 55. № 3. P. 339. https://doi.org/.org/10.1134/S0001437015030121
  39. Madenjian C.P., Stapanian M.A., Cott P.A. et al. 2015. Females exceed males in mercury concentrations of burbot Lota lota // Arch. Environ. Contam. Toxicol. V. 68. № 4. P. 678. https://doi.org/.org/10.1007/s00244-015-0131-1
  40. Mao L., Liu X., Wang Z. et al. 2021. Trophic transfer and dietary exposure risk of mercury in aquatic organisms from urbanized coastal ecosystems // Chemosphere. V. 281. P. 130836. https://doi.org/.org/10.1016/j.chemosphere.2021.130836
  41. Moiseenko T.I. 2010. Effect of toxic pollution on fish populations and mechanisms for maintaining population size // Rus. J. Ecol. V. 41. № 3. P. 237. https://doi.org/.org/10.1134/S1067413610030070
  42. Mustafa Ö.Z. 2016. Nutrition and gender effect on body composition of rainbow trout (Oncorhynchus mykiss) // J. VetBio Sci. Tech. V. 1. № 1. P. 20.
  43. Nargis А. 2006. Seasonal Variation in the Chemical Composition of Body Flesh of Koi Fish Anabas testudineus (Bloch) (Anabantidae: Perciformes) // Bangladesh J. Sci. Ind. Res. V. 41. № 43. Р. 219. https://doi.org/.org/10.3329/bjsir.v41i3.292
  44. Nicoletto P.F., Hendricks A.C. 1998. Sexual differences in accumulation of mercury in four species of centrarchid fishes // Can. J. Zool. V. 66. № 4. P. 944.
  45. Payuta A.A., Flerova E.A. 2019. Some Indicators of Metabolism in the Muscles, Liver, and Gonads of Pike-Perch Sander lucioperca and Sichel Pelecus cultratus from the Gorky Reservoir // J. Ichthyology. V. 59. № 2. Р. 225. https://doi.org/.org/10.1134/S0032945219020152
  46. Perrone P., Spinelli S., Mantegna G. et al. 2023. Mercury chloride affects band 3 protein-mediated anionic transport in red blood cells: role of oxidative stress and protective effect of olive oil polyphenols // Cells. V. 12. P. 424. https://doi.org/.org/10.3390/cells12030424
  47. Perry D., Shorthose W.R., Ferguson D.M., Thompson J.M. 2001. Methods used in the CRC program for the determination of carcass yield and beef quality // Aust. J. ExP. Agric. V. 41. № 7. P. 953. https://doi.org/.org/10.1071/EA00092
  48. Piras P., Bella A., Cossu M. et al. 2020. A representative sampling of tuna muscle for mercury control // Ital. J. Food Saf. V. 9. P. 9055. https://doi.org/.org/10.4081/ijfs.2020.9055
  49. Rennie M.D., Purchase C.F., Lester N. et al. 2008. Lazy males? Bioenergetic differences in energy acquisition and metabolism help to explain sexual size dimorphism in percids // J. Anim. Ecol. V. 77. № 5. P. 916. https://doi.org/.org/10.1111/j.1365-2656.2008.01412.x
  50. Selin N.E. 2009. Global biogeochemical cycling of mercury: a review // Annu. ReV. Environ. Resource. V. 34. № 1. P. 43. https://doi.org/.org/10.1146/annurev.environ. 051308.084314
  51. Storelli M.M., Barone G., Piscitelli G., Marcotrigiano G.O. 2007. Mercury in fish: concentration vs. fish size and estimates of mercury intake // Food Addit. Contam. V. 24. № 12. P. 1353. https://doi.org/.org/10.1080/02652030701387197
  52. Sonke J.E., Angot H., Zhang Y. et al. 2023. Global change effects on biogeochemical mercury cycling // Ambio. V. 52. P. 853. https://doi.org/10.1007/s13280-023-01855-y
  53. Stolbunov I.A., Pavlov D.D. 2006. Behavioral differences of various ecological groups of roach Rutilus rutilus L. and perch Perca fluviatilis L. // J. Ichthyol. V. 46. № 2. P. 213.
  54. Tomilina I.I., Grebenyuk L.P., Lobus N.V., Komov V.T. 2016. Biological effects of contaminated bottom sediments of water bodies in Central and South Vietnam on aquatic organisms // Inland Water Biol. V. 9. № 4. P. 413. https://doi.org/.org/10.1134/S1995082916030196
  55. Ullrich S.M., Tanton T.W., Abdrashitova S.A. 2001. Mercury in the aquatic environment: A review of factors affecting methylation // Environ. Sci. Technol. V. 31. № 3. P. 241.
  56. Watras C.J., Back R.C., Halvorsen S. et al. 1998. Bioaccumulation of mercury in pelagic freshwater food webs // Sci. Total Environ. V. 219. № 2–3. P. 183.
  57. Wiener J.G., Knights B.C., Sandheinreich M.B. 2006. Mercury in soils, lakes and fish in Vojageurs National Park (Minnesota): importance of atmospheric deposition and ecosystem factors // Environ. Sci. Technol. V. 40. № 20. P. 6261. https://doi.org/.org/10.1021/es060822h
  58. Wootton R.J. 1985. Energetics of reproduction // Fish energetics. Dordrecht: Springer. P. 231. https://doi.org/.org/10.1007/978-94-011-7918-8_9
  59. Yan H., Li Q., Yuan Z. et al. 2019. Research progress of mercury bioaccumulation in the aquatic food chain, China: A review // Bull. Environ. Contam. Toxicol. V. 102. P. 612. https://doi.org/.org/10.1007/s00128-019-02629-7
  60. Živković I., Šolić M., Kotnik J. et al. 2017. The abundance and speciation of mercury in the Adriatic plankton, bivalves and fish–a review // Acta Adriat. V. 58. № 3. P. 391. https://doi.org/10.32582/aa.58.3.2
  61. Zupo V., Graber G., Kamel S. et al. 2019. Mercury accumulation in freshwater and marine fish from the wild and from aquaculture ponds // Environ. Pollut. V. 255. P. 112975. https://doi.org/.org/10.1016/j.envpol.2019.112975

Copyright (c) 2024 The Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies