Lipid Profile of the Mussels Lymnaea stagnalis (Mollusca: Gastropoda) in Lakes with Different Degrees of Anthropogenic Pollution

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Dependence in water bodies between the degree of anthropogenic impact and the composition of lipids and fatty acids (FA) separately liver, foot and body of L. stagnalis has been examined. The lake located within the city limits is susceptible to various types of pollution, the lake in the national park zone is clean. The ecological condition of the different lakes probably influenced the composition and content of total lipids and fatty acids of L. stagnalis. The highest lipids have been noted in the liver of the snail. In the body, liver and leg of the species the lipids phosphatidylcholine and phosphatidylethanolamine dominate, the FA — polyunsaturated acids. The change of the lipid and FA content of the L. stagnalis in lakes is probably due to the high concentration of organic compounds, heavy metals.

Full Text

Restricted Access

About the authors

R. A. Mihaylov

Samara Federal Research Scientific Center of the Russian Academy of Sciences, Institute of Ecology of the Volga River Basin of the Russian Academy of Sciences; Papanin Institute for Biology of Inland Watersn Academy of Sciences

Author for correspondence.
Email: roman_mihaylov_1987@mail.ru
Russian Federation, Tolyattin Federation; Borok, Nekouzskii raion, Yaroslavl oblast

V. N. Nesterov

Samara Federal Research Scientific Center of the Russian Academy of Sciences, Institute of Ecology of the Volga River Basin of the Russian Academy of Sciences

Email: roman_mihaylov_1987@mail.ru
Russian Federation, Tolyattin Federation

A. V. Rahuba

Samara Federal Research Scientific Center of the Russian Academy of Sciences, Institute of Ecology of the Volga River Basin of the Russian Academy of Sciences

Email: roman_mihaylov_1987@mail.ru
Russian Federation, Tolyattin Federation

References

  1. Аракелова Е.С. 2008. Состав общих липидов и скорость энергетического обмена у брюхоногих моллюсков // Журн. общ. биол. Т. 9. № 6. С. 471.
  2. Головина И.В., Гостюхина О.Л., Андреенко Т.И. 2016. Особенности метаболизма в тканях моллюска-вселенца в Черное море Anadara kagoshimensis (Tokunaga, 1906) (Bivalvia: Arcidae) // Рос. журн. биол. инвазий. № 1. С. 53.
  3. Голубая книга Самарской области: Редкие и охраняемые гидробиоценозы. 2007. Самара: Самар. науч. центр РАН.
  4. Кейтс М. 1975. Техника липидологии. М.: Мир. (Kates M. 1972. Techniques of lipidology: isolation, analysis and identification of lipids. Amsterdam: North-Holland Publ. Co).
  5. Крепс Е.М. 1981. Липиды клеточных мембран. Эволюция липидов мозга. Адаптационная функция липидов. Л.: Наука.
  6. Методические указания. РД 52.24.643-2002. 2002. Метод комплексной оценки и степени загрязненности поверхностных вод по гидрохимическим показателям. СПб.: Гидрометеоиздат.
  7. Михайлов Р.А. 2017. Малакофауна разнотипных водоемов и водотоков Самарской области. Тольятти: Кассандра.
  8. Михайлов Р.А. 2020. Распределение легочного моллюска Lymnaea (Lymnaea) stagnalis (Mollusca: Gastropoda) в реке Самара (бассейн Саратовского водохранилища) // Вестн. Оренбург. гос. пед. ун-та. Электронный. науч. журн. № 4. С. 169. http://doi.org/10.32516/2303-9922.2020.36.8
  9. Протисты и бактерии озер Самарской области. 2009. Тольятти: Кассандра.
  10. Руководство по химическому анализу морских и пресных вод при экологическом мониторинге рыбохозяйственных водоемов и перспективных для промысла районов Мирового океана. 2003. М.: Изд-во ВНИРО.
  11. Сергеева М.Г., Варфоломеева А.Т. 2006. Каскад арахидоновой кислоты. М.: Народное образование.
  12. Смирнов Л.П., Богдан В.В. 2007. Липиды в физиолого- биохимических адаптациях эктотермных организмов к абиотическим и биотическим факторам среды. М.: Наука.
  13. Фокина Н.Н., Нефедова З.А., Немова Н.Н. 2010. Липидный состав мидий Mytilus edulis L. Белого моря. Влияние некоторых факторов среды обитания. Петрозаводск: Карельск. науч. центр РАН.
  14. Фокина Н.Н., Cуховская И.В., Васильева О.В., Немова Н.Н. 2020. Изменения в составе липидов жабр пресноводной мидии Anodonta cygnea под действием меди различных концентраций // Биология внутр. вод. № 5. C. 503. https://doi.org/10.31857/S0320965220040087
  15. Хохуткин И.М., Винарский М.В., Гребенников М.Е. 2009. Моллюски Урала и прилегающих территорий. Семейство Прудовиковые Lymnaeidae (Gastropoda, Pulmonata, Lymnaeiformes). Ч. 1. Екатеринбург: Гощицкий.
  16. Чеботарева М.А., Забелинский С.А., Шуколюкова Е.П. и др. 2011. Предел изменения индекса ненасыщенности жирно-кислотного состава фосфолипидов при адаптациях моллюсков к биогенными абиогенным факторам внешней среды // Журн. эвол. биохимии и физиологии. Т. 47. № 5. С. 383.
  17. Bellou S., Baeshen M.N., Elazzazy A.M. еt al. 2014. Microalgal lipids biochemistry and biotechnological perspectives // Biotech. Advanc. V. 32. P. 1476.
  18. Cancio I., Ibabe A., Cajaraville M.P. 1999. Seasonal variation of peroxisomal enzyme activities and peroxisomal structure in mussel a Mytilus galloprovincialis and its relationship with the lipid content // Comр. Biochem. C., Pharmacol. Toxicol. Endocrinol. V. 123. P. 135.
  19. Chi-Rong Liang, Strickla K.P. 1969. Phospholipid metabolism in the molluscs. I. Distribution of phospholipids in the water snail Lymnaea stagnaliis // Canad. J. Biochem. V. 47. P. 85.
  20. Chan C.Y., Wang W.X. 2018. A lipidomic approach to understand copper resilience in oyster Crassostrea hongkongensis // Aquat. Toxicol. V. 204. P. 160. https://doi.org/.org/10.1016/j.aquatox.2018.09.011
  21. Cossu C., Doyotte A., Babut M. еt al. 2000. Antioxidant biomarkers in freshwater bivalves, Unio tumidus, in response to different contamination profiles of aquatic sediments // Ecotoxicol. and Environ. Saf. V. 45. № 2. P. 106. https://doi.org/.org/10.1006/eesa.1999.1842
  22. De La Parra A.M., Garcia O., San Juan F. 2005. Seasonal variations on the biochemical composition and lipid classes of the gonadal and storage tissues of Crassostrea gigas in relation to the gametogenic cycle // J. Shellfish Res. V. 24. № 2. P. 457.
  23. Dembitsky V.M., Kashin A.G., Stefanov K. 1992. Comparative investigation of phospholipids and fatty acids of freshwater mollusks from the Volga River basin // Comр. Biochem. and Physiol. V. 102. P. 193.
  24. Dembitsky V.M., Rezanka T., Kashin A.G. 1993. Fatty acid and phospholipid compositions of freshwater molluscs Anodonta piscinalis and Limnaea fragilis front the river Volga // Comp. Biochеm. and Physiol. V. 105. P. 597.
  25. Doi H., Yurlova N.I., Kikuchi E. et al. 2010. Stable isotopes indicate individual level trophic diversity in the freshwater gastropod Lymnaea stagnalis // J. Molluscan Stud. V. 76. № 4. P. 384. https://doi.org/.org/10.1093/mollus/eyq020
  26. Fadhlaoui M., Lavoie I. 2021. Effects of Temperature and Glyphosate on Fatty Acid Composition, Antioxidant Capacity, and Lipid Peroxidation in the Gastropod Lymneae sP. // Water. V. 13. № 8. P. 1039. https://doi.org/.org/10.3390/w13081039
  27. Fortunato H. 2015. Mollusks: tools in environmental and climate research // Am. Malacol. Bull. V. 33. P. 310. https://doi.org/10.4003/006.033.0208
  28. Gubelit Y.I., Makhutova O.N., Sushchik N.N. et al. 2015. Fatty acid and elemental composition of littoral “green tide” algae from the Gulf of Finland, the Baltic Sea // J. Applied Phycol. V. 27. P. 375.
  29. Guerlet E., Ledy K., Giambérini L. 2006. Field application of a set of cellular biomarkers in the digestive gland of the freshwater snail Radix peregra (Gastropoda, Pulmonata) // Aquat. Toxicol. V. 77. P. 19. https://doi.org/10.1016/j.aquatox.2005.10.012
  30. Lopez C.S., Alice A.F., Heras H. et al. 2006. Role of anionic phospholipids in the adaptation of Bacillus subtilis to high salinity // Microbiol. V. 152. P. 605.
  31. Lesser M.P. 2006. Oxidative stress in marine environments: biochemistry and physiological ecology // Annu. ReV. Physiol. V. 68. P. 253. https://doi.org/10.1146/annurev.physiol.68.040104.110001
  32. Los D.A., Murata N. 2004. Membrane fluidity and its role in the perception of environmental signals // Biochim. et Biophys. Acta. V. 1666. № 1–2. P. 142. https://doi.org/.org/10.1016/j.bbamem.2004.08.002
  33. Saito H. 2004. Lipid and FA composition of the pearl oyster Pinctada fucata martensii: influence of season and maturation // Lipids. V. 39. № 10. P. 997.
  34. Saito H., Aono H. 2014. Characteristics of lipid and fatty acid of marine gastropod Turbo cornutus: high levels of arachidonic and n-3 docosapentaenoic acid // Food Chem. V. 145. P. 135.
  35. Vaskovsky V.E., Latyshev N.A. 1975. Modified Jungnickel’s reagent for detecting phospholipids and Other Phosphorus Compounds on Thin-layer Chromatograms // J. Chromatogr. V. 115. P. 246.
  36. Vinarski M.V., Kantor Yu.I. 2016. Analytical catalogue of fresh and brackish water molluscs of Russia and adjacent countries. M.: A.N. Severtsov Institute of Ecology and Evolution of RAS.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Рис. 1. Содержание и состав липидов в целом моллюске Lymnaea stagnalis (а), его печени (б) и ноге (в). ДАГ — диацилглицерины, ДФГ — дифосфатидилглицерины, К — кислоты, ЛФХ — лизоформы фосфатидилхолина, ТАГ — триацилглицерины, ФИ — фосфатидилинозиты, ФК — фосфатидные кислоты, ФС — фосфатидилсерины, ФХ — фосфатидилхолины, ФЭ — фосфатидилэтаноламины, Х — неизвестные соединения, ХОЛ — холестерины, ЭС — эфиры стеринов.

Download (236KB)
3. Рис. 2. Ординационная диаграмма RDA связи факторов среды (полужирные векторы) c липидами и ЖК в теле моллюска Lymnaea stagnalis (обычные векторы). SS — взвешенные вещества, P/O — перманганатная окисляемость, Tu — мутность воды, Cha — хлорофилл а, NH– азот аммонийный, Сu — медь, Zn — цинк, P — фосфор общий, Col — цветность воды, Hd — жесткость воды, Ca — кальций, Fe — железо общее, Mg — магний; B — тело; TAG — ТАГ, CHOL — ХОЛ, PCL — ФХ, PETH — ФЭ, К — К.

Download (204KB)

Copyright (c) 2024 The Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies