Spatial distribution of the diatoms Dactyliosolen fragilissimus and Cerataulina pelagica in the autumn phytoplankton of the South-Eastern Baltic in 2020–2021

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The mass development of diatom Dactyliosolen fragilissimus and Cerataulina pelagica, which are atypical of the South-East Baltic Sea water area, were registered along the Sambia peninsula coastline in the mid of October 2020. Both species were found in the coastal zone of the western and northern coast of the Sambia peninsula to a depth of 32 m, from the Baltic Strait to port Pionerskiy. In early November 2021 a mass vegetation of C. pelagica was recorded –both in the shallow coastal zone of the northern coast of the Sambia peninsula and in the deep water zone of the South-Eastern Baltic Sea. The biomass of this species reached 2.8 g/m3. Both diatom species were abundant within the entire Russian Exclusive Economic Zone. The prevailing hydrological situation during the study period probably facilitated penetration of the species into the study area by surface transport from the Arkona Basin.

Full Text

Restricted Access

About the authors

А. S. Melnik

Shirshov Institute of Oceanology, Russian Academy of Sciences

Author for correspondence.
Email: AnastassizaHabar@mail.ru
Russian Federation, Moscow

О. А. Dmitrieva

Shirshov Institute of Oceanology, Russian Academy of Sciences; Russian Federal Research Institute of Fisheries and Oceanography “VNIRO”

Email: phytob@yandex.ru

Atlantic branch of VNIRO 

Russian Federation, Moscow; Kaliningrad

Е. Е. Eshova

Shirshov Institute of Oceanology, Russian Academy of Sciences

Email: AnastassizaHabar@mail.ru
Russian Federation, Moscow

А. Y. Sharton

Shirshov Institute of Oceanology, Russian Academy of Sciences

Email: AnastassizaHabar@mail.ru
Russian Federation, Moscow

А. А. Kondrashov

Shirshov Institute of Oceanology, Russian Academy of Sciences

Email: AnastassizaHabar@mail.ru
Russian Federation, Moscow

References

  1. Евтушенко Н.В., Шеберстов С.В. 2016. Использование данных спутникового сканера MODIS-Aqua для исследования циклов цветения фитопланктона в Балтийском море // Современные проблемы дистанционного зондирования Земли из космоса. Т. 13. № 3. С. 114. https://doi.org/10.21046/2070-7401-2016-13-3-114-124
  2. Колпаков Н.В., Бегун А.А. 2014. Состав и распределение микроводорослей в эстуарии река Суходол (Уссурийский залив, залив Петра Великого) в осенний период // Условия обитания промысловых объектов. Известия ТИНРО. Т. 176. С. 115.
  3. Кудрявцева Е.А., Александров С.В. 2019. Гидролого-гидрохимические основы первичной продуктивности и районирование российского сектора Гданьского бассейна Балтийского моря // Океанология. Т. 59. № 1. С. 56. https://doi.org/10.31857/S0030-157459156-71
  4. Методические основы комплексного экологического монитора океана. 1988. М.: Гидрометеоиздат. С. 185.
  5. Рябушко Л.И. 2003. Потенциально опасные микроводоросли Азово-Черноморского бассейна // Институт биологии Южных морей им. О.А. Ковалевского НАН Украины. Севастополь: ЭКОСИ- Гидрофизика. С. 181.
  6. Радченко И.Г., Капков В.И., Федоров В.Д. 2010. Практическое руководство по сбору и анализу проб морского фитопланктона: Учебно-методическое пособие для студентов биологических специальностей университетов. М.: Мордвинцев. С. 60.
  7. Стельмах Л.В. 2023. Влияние абиотических факторов на структурные и функциональные характеристики Cerataulina pelagica (Cleve) Hendey // Биология внутр. вод. № 2. С. 174. https://doi.org/10.31857/S0320965223020237.
  8. Толомеев А.П., Дубовская О.П., Кравчук Е.С. и др. 2023. Горизонтальные неоднородности функционирования фито- и зоопланктона в озере с ветровыми течениями // Биология внутр. вод. № 2. С. 196. https://doi.org/10.31857/S0320965223020249.
  9. Система Балтийского моря. 2017. М.: Науч. мир. C. 251.
  10. Abdalla R.R., Zaghloul F.A., Hussein N.R. 1995. A statistical modelling of phytoplankton eutrophication in the Eastern Harbour // Alexandria. Egypt. Bulletin of the National Institute of Oceanography and Fisheries (Egypt). V. 21(1). P. 125.
  11. Ault T., Velzeboer R., Zammit R. 2000. Influence of nutrient availability on phytoplankton growth and community structure in the Port Adelaide River, Australia: bioassay assessment of potential nutrient limitation // Hydrobiologia. V. 429: P. 89. https://doi.org/10.1023/A:1004024630413
  12. Carlsson P., Graneli E. 1999. Effects of N:P:Si ratios and zooplankton grazing on phytoplankton communities in the northern Adriatic Sea. I. Phytoplankton species composition // Aquatic Microbial Ecology. V. 18(1). P. 55.
  13. Clarke K.R., Gorley R.N. 2006. PRIMER v 6: User Manual. Tutorial // Plymounth: Marine Laboratory. Р. 190.
  14. Dmitrieva O.A., Semenova A.S. 2011. Seasonal Dynamics of phyto- and zooplankton and their interactions in the hypereutrophic reservoir // Inland Water Biol. V. 4. № 3. P. 308. https://doi.org/ 10.1134/S1995082911030059
  15. Hasle G.R., Syvertsen E.E. 1996. Marine diatoms // Identifying Marine Phytoplankton. San Diego: Acad. Press. P. 5.
  16. Kahru M., Elmgren R. 2014. Satellite detection of multi-decadal time series of cyanobacteria accumulations in the Baltic Sea // Biogeosciences Discussions. V. 11. P. 3319. https://doi.org/10.5194/bgd-11-3319-2014
  17. Kraberg A., Baumann M., Durselen C.D. 2010. Coastal Phytoplankton: Photo Guide for Northern European Seas // Verlag Dr. Friedrich Pfeil, Munchen. Germany. P. 204.
  18. Lauria M.L., Purdie D.A., Sharples J. 1999. Contrasting phytoplankton distributions controlled by tidal turbulence in an estuary // Journal of Marine Systems. V. 1. P. 189. https://doi.org/10.1016/S0924-7963(99)00013-5
  19. Łotocka M. 2006. The first observed bloom of the diatom Dactyliosolen fragilissimus (Bergon) Hasle 1996 in the Gulf of Gdańsk // Oceanologia. V. 48(3) P. 447.
  20. Nausch G., Feistel R., Lass Н.U. et al. 2006. Hydrographischchemische Zustandseinsch¨atzung der Ostsee 2005 // Meereswiss Ber./Mar. Sci. V. 66 P. 82. https://doi.org/10.12754/msr-2013-0091
  21. NEMO ocean engine. Scientific notes of climate modelling center. 2019. Vol. 27. ISSN 1288-1619, Institut Pierre-Simon Laplace (IPSL). https://doi.org/10.5281/zenodo.1464816.
  22. Olenina I., Kownacka J. 2010. An unusual phytoplankton event five years later: the fate of the atypical range expansion of marine species into the south-eastern Baltic // HELCOM Baltic Sea Environment Fact Sheet. P. 15.
  23. Philips E.J., Badylak S., Christman M.C., Las M.A. 2010. Climatic Trends and Temporal Patterns of Phytoplankton Composition, Abundance, and Succession in the Indian River Lagoon, Florida, USA // Estuaries and Coasts. V. 33(2). P. 498. https://doi.org/10.1007/s12237-009- 9166-8
  24. Wasmund N., Nausch G., Matthaus W. 1998. Phytoplankton spring blooms in the southern Baltic Sea — spatio-temporal development and long-term trends // J. Plankton Res. V. 20. P. 1099. https://doi.org/10.1093/plankt/20.6.1099
  25. Wasmund N., Alheit J., Pollehne F. et al. 1999. The biological state of the Baltic Sea in 1998 on the basis of phytoplankton, zooplankton and zoobenthos-investigations // Meereswiss. Ber./Mar. Sci. ReP. V. 37. P. 75.
  26. Wasmund N., Pollehne F., Postel L. et al. 2001. Biological state assessment of the Baltic Sea in 2000 // Meereswiss. Ber./Mar. Sci. ReP. V. 46. P. 74.
  27. Wasmund N., Andrushaitis A., Łysiak-Pastuszak E. et al. 2001. Trophic status of the south-eastern Baltic Sea: a comparison of coastal and open areas // Estuar. Coast. Shelf Sci. № 53. P. 849. https://doi.org/10.1006/ecss.2001.082
  28. Wasmund N., Uhlig S. 2003. Phytoplankton trends in the Baltic Sea, ICES J. Mar. Sci. // J. Cons. Int. Explor. Mer. V. 60 (2). P. 177. https://doi.org/10.1016/S1054-3139%2802%2900280
  29. Wasmund N., Dutz J., Kremp A., Zettler M.L. 2018. Biological assessment of the Baltic Sea // Meereswissenschaftliche Berichte. Marine Science Reports. V. 112. № 99. P. 30.
  30. https://doi.org/10.12754/msr-2019-0112
  31. Yamada M., Tsuruta A., Yoshida Y. 1980. List of phytoplankton as eutrophic level indicator // Bull. JaP. Soc. Sci. Fish. V. 46. № 12. P. 1435.
  32. Żmijewska M., Niemkiewicz E., Bielecka L. 2000. Abundance and species composition of plankton in the Gulf of Gdańsk near the planned underwater outfall of the Gdańsk-Wschód (Gdańsk–East) sewage treatment plant // Oceanologia. V. 42(3). P. 335.
  33. Электронный ресурс: Служба мониторинга морской среды CMEMS. [Электронный ресурс]. URL: https://marine.copernicus.eu/ [дата обращения 07.02.2023]

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Location of sampling stations: a — western coast of the Sambian Peninsula, southeastern part of the Baltic Sea, October 2020, b — exclusive economic zone of Russia, October–November 2021 — station numbers.

Download (487KB)
3. Fig. 2. Spatial structure of current fields in the surface water layer in the central and southeastern parts of the Baltic Sea: a — 23.10.2021, b — 30.10.2021, c — 12.10.2020, d — 15.10.2020 (0.0–0.5 m/s — range of current velocity changes).

Download (731KB)
4. Fig. 3. Distribution of the relative biomass of systematic phytoplankton groups (%) (left ordinate axis) and total biomass (g/m3) (right ordinate axis) in the southeastern Baltic Sea in October–November 2021.

Download (465KB)
5. Fig. 4. Spatial distribution of biomass (g/m3) of Cerataulina pelagica (a) and Dactyliosolen fragilissimus (b) in the south-eastern Baltic Sea in October–November 2021.

Download (500KB)
6. Fig. 5. Dendrogram of cenotic similarity (by biomass) of phytoplankton in the southeastern Baltic Sea in October–November 2021.

Download (195KB)
7. Fig. 6. Spatial distribution of phytoplankton groups (FCG 1–FCG 4) in the southeastern Baltic Sea in October–November 2021.

Download (472KB)
8. Fig. 7. Distribution of the share of dominant species in biomass within the identified phytoplankton groups (IPG) in the southeastern Baltic Sea in October–November 2021.

Download (269KB)
9. Fig. 8. Relative biomass of systematic groups of phytoplankton (left ordinate axis) and total phytoplankton biomass (g/m3) (right ordinate axis) at stations along the western coast of the Sambian Peninsula in the southeastern Baltic Sea in October 2020.

Download (263KB)
10. Fig. 9. Biomass of dominant taxa and phytoplankton biomass in the coastal zone of the western coast of the Sambian Peninsula of the southeastern Baltic Sea in October 2020.

Download (307KB)

Copyright (c) 2024 The Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies