Influence of the Rate of Changes in the COX1 Gene on Body Size and Sexual Selection in Carp Hybridization

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The influence of mtDNA cytochrome c-oxidase I gene fragment variability on body length was studied in twelve species of cyprinids, which may have hybrids with Rutilus rutilus L. and Abramis brama L., and in reciprocal hybrids (RA, AR) and alloplasmatic backcrosses (ARR, RAA) of roach (R) and bream (A). It has been established that the rate of nucleotide substitutions in COX1 is negatively related not only to body size but also to fish life span, which differentiates them into two groups: group I – species with a high rate of COX1 changes and a relatively small body size and group II – species with low sequence variability and relatively large body size. The boundary for the distinguished groups runs between species the same genus Leuciscus leuciscus and L. idus: with a twofold decrease in the rate of substitutions in ide, a twofold increase in body size and lifespan occurs, which indicates a decrease in the rate of cellular respiration and free radical leak, and the exact mitonuclear match respiratory complexes. Presumably, the decrease in the rate of COX1 changes in species of group II and in bleak Alburnus alburnus is associated with an increase in the size of genome, which provides additional protection of genes from chemical mutagens and, regardless of body size, reduces the rate of aerobic metabolism. It has been experimentally shown that mtDNA affects body length. When bream mtDNA is included in the roach nuclear genome, ARR backcrosses have the body length of a bream and high viability, while RAA backcrosses with roach mtDNA and the bream nuclear genome inherit the roach body length and reduce viability. Species of group II are not able to effectively use the highly polymorphic mtDNA of species of group I, which is also manifested by a violation of the inheritance of a longer bream body length in RA hybrids and leads to reproductive isolation. Group I species, such as Rutilus rutilus, can include mtDNA of both groups in their genome, which underlies sexual selection in hybridization. Accordingly, sexual size dimorphism has a genetic origin, and body size for a potential partner can be a signal for determining the mitonuclear compatibility of genomes in respiratory complexes.

About the authors

V. V. Stolbunova

Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences

Author for correspondence.
Email: vvsto@mail.ru
Russia, Nekouzskii raion, Yaroslavl oblast, Borok

E. A. Borovikova

Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences

Email: vvsto@mail.ru
Russia, Nekouzskii raion, Yaroslavl oblast, Borok

References

  1. Бердников В.А. 1991. Эволюция и прогресс. Новосибирск: Наука.
  2. Величко А.К., Разин С.В., Кантидзе О.Л. 2021. Клеточный ответ на повреждения ДНК, возникающие в рибосомных генах // Мол. биол. Т. 55. № 2. С. 210. https://doi.org/10.31857/S0026898421020142
  3. Животовский Л.А. 1991. Популяционная биометрия. М.: Наука.
  4. Замахаев Д.Ф. 1959. О типах размерно-половых соотношений у рыб // Тр. Москов. ин-та рыб. пром-сти и хоз-ва. Вып. 10. С. 183.
  5. Комова Н.И. 2021. Относительная масса глоточных зубов плотвы Rutilus rutilus: связь с биологическими показателями рыб и наследуемыми признаками // Биол. внутр. вод. № 2. С. 124. https://doi.org/10.31857/S032096522102008X
  6. Лужин Б.П. 1977. Зародышевое развитие карпа // Рыбоводство и рыболовство. № 2. С. 11.
  7. Патрушев Л.И., Минкевич И.Г. 2007. Проблема размера генома эукариот // Успехи биол. химии. Т. 47. С. 293.
  8. Правдин И.Ф. 1966. Руководство по изучению рыб (преимущественно пресноводных). М.: Пищевая пром-сть.
  9. Решетников Ю.С. 2003. Атлас пресноводных рыб России. М.: Наука.
  10. Столбунова В.В. 2017. Межгеномный конфликт при отдаленной гибридизации плотвы (Rutilus rutilus L.) и леща (Abramis brama L.) // Успехи соврем. биол. Т. 137. № 4. С. 361. https://doi.org/10.7868/S0042132417040044
  11. Столбунова В.В., Кодухова Ю.В. 2021. Наследование ITS1 рДНК у реципрокных гибридов плотвы Rutilus rutilus (L.) и леща Abramis brama (L.) в раннем онтогенезе // Успехи соврем. биол. Т. 141. № 1. С. 66. https://doi.org/10.31857/S0042132421010233
  12. Столбунова В.В., Кодухова Ю.В. 2023. Ядерно-цитоплазматический конфликт у гибридов плотвы Rutilus rutilus (L.) и леща Abramis brama (L.) как следствие дивергенции видов по размерам тела и генома // Биология внутр. вод. № 1. С. 92. https://doi.org/10.31857/S0320965223010187
  13. Andersson M.B. Sexual Selection. Princeton University Press. 1994.
  14. Blachuta J., Witkowski A. 1984. Natural hybrids Alburnus alburnus (L.) × Rutilus rutilus (L.), Alburnus alburnus (L.) × × Blicca bjoerkna (L.) and Alburnus alburnus (L.) × × Abramis brama (L.) from the Oder River // Acta Hydrobiologica. V. 25–26(2). P. 189.
  15. Bolnick D.I., Turelli M., López-Fernández H. et al. 2008. Accelerated Mitochondrial Evolution and “Darwin’s Corollary”: Asymmetric Viability of Reciprocal F1 Hybrids in Centrarchid Fishes // Genetics. V. 178(2). P. 1037. https://doi.org/10.1534
  16. Cosmides L.M., Tooby J. Cytoplasmic inheritance and intragenomic conflict // J. Theor. Biol. 1981. V. 89(1). P. 83. https://doi.org/10.1016/0022-5193(81)90181-8
  17. Cowx I.G. 1983. The biology of bream, Abramis brama (L.), and its natural hybrid with roach, Rutilus rutilus (L.), in the river Exe // J. Fish Biol. V. 22. P. 631. https://doi.org/10.1111/j.1095-8649.1983.tb04223.x
  18. Drummond D.A., Bloom J.D., Adami C. et al. 2005. Why Highly Expressed Proteins Evolve Slowly // Proc. Natl. Acad. Sci. USA. V. 102. P. 14.338. https://doi.org/10.1073/pnas.0504070102
  19. Ellison Ch.K., Burton R.S. 2006. Disruption of mitochondrial function in interpopulation hybrids of Tigriopus californicus // Evolution. V. 60(7). P. 1382. https://doi.org/10.1111/j.0014-3820.2006.tb01217.x
  20. Fairbairn D.J. 1997. Allometry for sexual size dimorphism: Pattern and Process in the Coevolution of Body Size in Males and Females // Annu. Rev. Ecol. Syst. V. 28. P. 659. https://doi.org/10.1146/annurev.ecolsys.28.1.659
  21. Fan W., Waymire K.G., Narula N. et al. 2008. A mouse mo-del of mitochondrial disease reveals germline selection against severe mtDNA mutations. V. 319(5865). P. 958. https://doi.org/10.1126/science.1147786
  22. Flavell R.B. 1982. Sequence amplification, deletion and rearrangement: major sources of variation during species divergence // Genome Evolution. London: Acad. Press. P. 301.
  23. Gammerdinger W.J., Conte M.A., Sandkam B.A. et al. 2018. Novel sex chromosomes in three cichlid fishes from Lake Tanganyika // J. Heredity. V. 109(5). P. 489. https://doi.org/10.1093/jhered/esy00
  24. Gershoni M., Templeton A., Mishmar D. 2009. Mitochondrial bioenergetics as a major motive force of speciation // Bioessays. V. 31. P. 642.https://doi.org/10.1002/bies.200800139
  25. Gibbons J.G., Branco A.T., Yu S., Lemos B. 2014. Ribosomal DNA copy number is coupled with gene expression variation and mitochondrial abundance in humans // Nat. Commun. V. 5. P. 4850. https://doi.org/10.1038/ncomms5850
  26. Harman D. 1956. Aging: a theory based on free radical and radiation chemistry // J. Gerontol. V. 11(3). P. 298. https://doi.org/10.1093/geronj/11.3.298
  27. Hayden B., Coscia I., Mariani S. 2011. Low cytochrome b variation in bream Abramis brama // J. Fish Biol. V. 78. P. 1579. https://doi.org/10.1111/j.1095-8649.2011.02941.x
  28. Hill G.E., Johnson J.D. 2013. The mitonuclear compatibility hypothesis of sexual selection // Proc. Biol. Sci. V. 280. P. 20131314. https://doi.org/10.1098/rspb.2013.1314
  29. Hofmann J.R. 2017. Rate variation during molecular evolution: creationism and the cytochrome c molecular clock // Evo. Edu. Outreach. V. 10(1). P. 1. https://doi.org/10.1186/s12052-017-0064-4
  30. Hubbs C.L., Kuronuma K. 1942. Hybridization in nature between two genera of flounders in Japan // Papers of Michigan Acad. Sci., Arts and Letters. V. 27. P. 267.
  31. Kemper K.E., Visscher P.M., Goddard M.E. 2012. Genetic architecture of body size in mammals // Genome Biol. V. 13(4). P. 244. https://doi.org/10.1186/gb4016
  32. Kimura M. 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences // J. Mol. Evol. V. 16. P. 111. https://doi.org/10.1007/BF01731581
  33. Kopiejewska W., Terlecki J., Chybowski L. 2003. Varied somatic growth and sex cell development in reciprocal hybrids of roach Rutilus rutilus (L.) and ide Leuciscus idus (L.) // Arch. Pol. Fish. V. 11(1). P. 33. https://doi.org/10.3750/AIP2004.34.1.05
  34. Kottelat M., Freyhof J. 2007. Handbook of European freshwater fishes. Berlin: Publications Kottelat, Cornol and Freyhof.
  35. Kumar S., Stecher G., Tamura K. 2016. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for bigger datasets // Mol. Biol. Evol. V. 33(7). P. 1870.
  36. Kyritsi S., Kokkinakis A.K. 2020. Age, Growth, Reproduction and Fecundity of Roach Rutilus rutilus from Volvi Lake, Northern Greece // Turkish J. Fish Aquat. Sci. V. 20(10). P. 717. https://doi.org/10.4194/1303-2712-v20_10_01
  37. Lane N. 2011. Mitonuclear match: optimizing fitness and fertility over generations drives ageing within generations // Bioessays. V. 33. P. 860. https://doi.org/10.1002/bies.201100051
  38. Lane N., Martin W. 2010. The energetics of genome complexity // Nature. V. 467. P. 929.
  39. Lanfear R.B., Calcott S.Y.W.Ho., Guindon S. 2012. Partition Finder: Combined selection of partitioning schemes and substitution models for phylogenetic analyses // Mol. Biol. Evol. V. 29. P. 1695. https://doi.org/10.1093/molbev/mss020
  40. Librado P., Rozas J. 2009. DNASP v.5: A Software for comprehensive analysis of DNA polymorphism data // Bioinfromatics. V. 25. P. 1451. https://doi.org/10.1093/bioinformatics/btp187
  41. Little A.G., Kocha K.M., Lougheed S.C., Moyes C.D. 2010. Evolution of the nuclear-encoded cytochrome oxidase subunits in vertebrates // Physiol. Genomics. V. 42. P. 7684. https://doi.org/10.1152/physiolgenomics.00015.2010
  42. López-Cortegano E., Carpena-Catoira C., Carvajal-Rodríguez A., Rolán-Alvarez E. 2020. Mate choice based on body size similarity in sexually dimorphic populations causes strong sexual selection // Anim. Behav. V. 160. P. 69. https://doi.org/10.1016/j.anbehav.2019.12.005
  43. McLain D.K. 1993. Cope’s rules, sexual selection, and the loss of ecological plasticity // Oikos. V. 68. P. 490. https://doi.org/10.2307/3544917
  44. Nabholz B., Glémin S., Galtier N. 2009. The erratic mitochondrial clock: variations of mutation rate, not population size, affect mtDNA diversity across birds and mammals // BMC Evol. Biol. V. 9(1). P. 54. https://doi.org/10.1186/1471-2148-9-54
  45. Nelson J.S., Grande T.C., Wilson M.V.H. 2016. Fishes of the world. N.Y.: John Wiley & Sons.
  46. Olmo E. 2003. Reptiles: a group of transition in the evolution of genome size and of the nucleotypic effect // Cytogenet. Genome Res. V. 101. P. 166. https://doi.org/10.1159/000074174
  47. De Paula W.B., Lucas C.H., Agip A.N. et al. 2013. Energy, ageing, fidelity and sex: oocyte mitochondrial DNA as a protected genetic template // Phil. Trans. R. Soc. B. V. 368. P. 20120263. https://doi.org/10.1098/rstb.2012.0263
  48. Pierce B.A., Mitton J.B. 1980. The relationship between genome size and genetic variation // Am. Nat. V. 116. P. 850.
  49. Pierron D., Wildman D.E., Hüttemann M. et al. 2012. Cytochrome c oxidase: Evolution of control via nuclear subunit addition // Biochim., Biophys. Acta. V. 1817(4). P. 590. https://doi.org/10.1016/j.bbabio.2011.07.007
  50. Posada D., Buckley T.R. 2004. Model selection and model averaging in phylogenetics: advantages of akaike information criterion and bayesian approaches over likelihood ratio tests // Syst. Biol. V. 53(5). P. 793. https://doi.org/10.1080/10635150490522304
  51. Purdom C.E. 1979. Purdom C.E. 1979. Genetics of growth and reproduction in teleosts. Fish phenology: anabolic adaptiveness in teleosts. London: Acad. Press. P. 207.
  52. Rand D.M., Fry A.J., Sheldahl L. 2006. Nuclear–Mitochondrial Epistasis and Drosophila Aging: Introgression of Drosophila simulans mtDNA Modifies Longevity in D. melanogaster Nuclear Backgrounds // Genetics. V. 72. P. 329. https://doi.org/10.1534/genetics.105.046698
  53. Richard G.F., Kerrest A., Dujon B. 2008. Comparative genomics and molecular dynamics of DNA repeats in eukaryotes // Microbiol. Mol. Biol. Rev. V. 72(4). P. 686. https://doi.org/10.1128/MMBR.00011-08
  54. Romanov D.E., Butenko E.V., Shkurat T.P. 2019. Genome distance between growth-regulating genes and telomeres is correlated with morpho-physiological traits in mammals // Gene Reports. V. 14. P. 124. https://doi.org/10.1016/j.genrep.2018.12.006
  55. Ronquist F., Teslenko M., Paul van der Mark et al. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space // Syst. Biol. V. 61. P. 539.
  56. Runemark A., Eroukhmanoff F., Nava-Bolaños A. et al. 2018. Hybridization, sex-specific genomic architecture and local adaptation // Philos. Trans. R. Soc. Lond. B. Biol. Sci. V. 373(1757). P. 20170419. https://doi.org/10.1098/rstb.2017.0419
  57. Schrader M., Fuller R.C., Travis J. 2013. Differences in offspring size predict the direction of isolation asymmetry between populations of a placental fish // Biol. Letters. V. 9. № 55. P. 20130327. https://doi.org/10.1098/rsbl.2013.0327
  58. Scribner K.T., Page K.S., Bartron M.L. 2001. Hybridization in freshwater fishes: a review of case studies and cytonuclear methods of biological inference // Rev. Fish. Biol. Fish. V. 10. P. 293. https://doi.org/10.1023/A:1016642723238
  59. Shipley J.R., Campbell P., Searle J.B., Pasch B. 2016. Asymmetric energetic costs in reciprocal-cross hybrids between carnivorous mice (Onychomys) // J. Exp. Biol. V. 219. P. 3803. https://doi.org/10.1242/jeb.148890
  60. Šorić V.M. 2004. A natural hybrid of Leuciscus cephalus and Alburnus alburnus (Pisces, Cyprinidae) from the Ibar River, Western Serbia // Archives Biol. Sci. V. 56(1–2). P. 23. https://doi.org/10.2298/ABS0402023S
  61. Stolbunova V.V., Pavlova V.V., Kodukhova Y.V. 2020. Asymmetric hybridization of roach Rutilus rutilus L. and common bream Abramis brama L. in controlled backcrosses: Genetic and morphological patterns // Biosyst. Divers. V. 28(4). P. 35. https://doi.org/10.15421/012048
  62. Villani G., Attardi G. 1997. In vivo control of respirationby cytochrome c oxidase in wild-type and mitochondrial DNA mutation-carrying human cells // Proc. Natl. Acad. Sci. USA. V. 94. P. 1166.
  63. Vetesník L., Halacka K., Papousek I. et al. 2009. The first record of a natural hybrid of the roach Rutilus rutilus and nase Chondrostoma nasus in the Danube River Basin, Czech Republic: morphological, karyological and molecular characteristics // J. Fish Biol. V. 74. P. 1669. https://doi.org/10.1111/j.1095-8649.2009.02220.x
  64. Vinogradov A.E., Anatskaya O.V. 2006. Genome size and metabolic intensity in tetrapods: a tale of two lines // Proc. R. Soc. B. V. 273. P. 27. https://doi.org/10.1098/rspb.2005.3266
  65. Von Zglinicki T. 2002. Oxidative stress shortens telomeres // Trends Biochem. Sci. V. 27(7). P. 339. https://doi.org/10.1016/s0968-0004(02)02110-2
  66. Wallace D.C. 2007. Why do we still have a maternally inherited mitochondrial DNA? Insights from evolutionary medicine // Annu. Rev. Biochem. V. 76. P. 781. https://doi.org/10.1146/annurev.biochem.76.081205.150955
  67. Werren J.H., Beukeboom L.W. 1998. Sex determination, sex ratios, and genetic conflict // Annu. Rev. Ecol. Evol. Syst. V. 29. P. 233. https://doi.org/10.1146/annurev.ecolsys.29.1.233
  68. Wirtz P. 1999. Mother species-father species: unidirectional hybridization in animals with female choice // Anim. Behav. V. 58(1). P. 1. https://doi.org/10.1006/anbe.1999.1144
  69. Witkowski A., Kotusz J., Wawer K. et al. 2015. A Natural Hybrid of Leuciscus leuciscus (L.) and Alburnus alburnus (L.) (Osteichthyes: Cyprinidae) from the Bystrzyca River (Poland) // Ann. Zool. V. 65(2). P. 287.https://doi.org/10.3161/00034541ANZ2015.65.2.010
  70. Wyngaard G.A., Rasch E.M., Manning N.M. et al. 2005. The relationship between genome size, development rate, and body size in copepods // Hydrobiologia. V. 532. P. 123.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (76KB)
3.

Download (100KB)

Copyright (c) 2023 В.В. Столбунова, Е.А. Боровикова

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies