Horizontal Heterogeneities of Functioning of Phyto- and Zooplankton in a Lake With Wind Currents

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

A hypothesis about the formation of horizontal heterogeneities of zooplankton and phytoplankton for the lake subjected to regular daily changes in wind currents has been tested. Formation of horizontal heterogeneities is based on a combination of low-amplitude vertical migration of zooplankton and epilimnion wind currents: surface currents, which bring water depleted in zooplankton to the downwind shore (in the direction in which the wind is blowing), and compensatory above-thermocline ones, which bring zooplankton-enriched water to the upwind shore (against the wind). The spatial separation of phytoplankton and zooplankton may result in the weakening of trophic links between these trophic levels. The hypothesis was tested in 2020 in the pelagic zone of Lake Shira (Khakassia, Russia), a brackish meromictic water body with simple bathymetry and a simple food web. The epilimnion horizontal heterogeneities were assessed using a survey across the lake by measuring biological and physical parameters with a submersible fluorimeter probe and a plankton net at 11 stations and recording the dynamics of wind speed and direction. Differences in the values of primary production, plankton destruction, and intensity of phytoplankton grazing by zooplankton near the downwind and upwind shores were estimated using the bottle method in 3 experiments. The experiments confirmed the expected differences in the functioning of the trophic cascade near the northeastern (more often upwind during the day and downwind at night) and south-southwestern (downwind during the day and upwind at night) shores. Namely, the concentration of chlorophyll a, the gross and net primary production of phytoplankton (estimated by bottle and fluorescent methods), and the daily intensity of zooplankton feeding (based on chlorophyll) were higher near the southern coast, while the biomass of net zooplankton and the respiration rate of the plankton community were higher near the northeastern shore, which coincided with the pattern of phyto- and zooplankton distribution over the lake according to the sampling data under similar weather conditions. The hypothesis was confirmed and supplemented by the data on the evening-night vertical migrations of zooplankton.

Авторлар туралы

A. Tolomeev

Institute of Biophysics, Federal Research Center Krasnoyarsk Science Center, Siberian Branch, Russian Academy of Sciences; Siberian Federal University

Email: dubovskaya@ibp.krasn.ru
Russia, Krasnoyarsk; Russia, Krasnoyarsk

O. Dubovskaya

Institute of Biophysics, Federal Research Center Krasnoyarsk Science Center, Siberian Branch, Russian Academy of Sciences; Siberian Federal University

Хат алмасуға жауапты Автор.
Email: dubovskaya@ibp.krasn.ru
Russia, Krasnoyarsk; Russia, Krasnoyarsk

E. Kravchuk

Institute of Biophysics, Federal Research Center Krasnoyarsk Science Center, Siberian Branch, Russian Academy of Sciences

Email: dubovskaya@ibp.krasn.ru
Russia, Krasnoyarsk

O. Anishchenko

Institute of Biophysics, Federal Research Center Krasnoyarsk Science Center, Siberian Branch, Russian Academy of Sciences

Email: dubovskaya@ibp.krasn.ru
Russia, Krasnoyarsk

A. Drobotov

Institute of Biophysics, Federal Research Center Krasnoyarsk Science Center, Siberian Branch, Russian Academy of Sciences

Email: dubovskaya@ibp.krasn.ru
Russia, Krasnoyarsk

Әдебиет тізімі

  1. Баранов В.И., Голенко Н.Н., Компаниец Л.А. и др. 2013. Пространственно-временная изменчивость основных характеристик озера Шира в сезоне наблюдений 2011–2012 гг. // Вестн. Бурятск. гос. ун-та. № 9. С. 148.
  2. Бульон В.В. 2017. Хлорофилл а как показатель биомассы фитопланктона // Вода: Химия и экология. № 8. С. 39.
  3. Гладышев М.И. 1990. Суточная динамика вертикального распределения массовых видов зоопланктона в Сыдинском заливе Красноярского водохранилища // Изв. Сиб. отд. АН СССР. Сер. биол. Вып. 3. С. 78.
  4. Гутельмахер Б.Л. 1986. Метаболизм планктона как единого целого. Трофометаболические взаимодействия фито- и зоопланктона. Ленинград: Наука.
  5. Гутельмахер Б.Л., Никулина В.Н. 1977. Питание Arctodiaptomus salinus Daday в Тюпском заливе озера Иссык-Куль // Гидробиологические исследования на реке Тюп и Тюпском заливе озера Иссык-Куль. Ленинград: Зоол. ин-т АН СССР. С. 87.
  6. Минеева Н.М. 2021. Многолетняя динамика хлорофилла в планктоне различных участков крупного равнинного водохранилища // Биология внутр. вод. № 6. С. 574. https://doi.org/10.31857/S0320965221060127
  7. Осипов В.А. 2006. Зависимость флуоресцентных параметров икроводорослей от факторов среды, включая антропогенные загрязнения: Автореф. дис. … канд. биол. наук. Москва. 22 с.
  8. Поддубный С.А., Цветков А.И., Иванова И.Н. и др. 2020. Термические и динамические процессы в озере Плещеево // Тр. Ин-та биологии внутр. вод им. И.Д. Папанина РАН. Вып. 90(93). С. 7. https://doi.org/10.24411/0320-3557-2020-10009
  9. Толомеев А.П., Задереев Е.С. 2003. Действие солнечной радиации на вертикальные миграции Arctodiaptomus salinus и Braсhionus plicatilis в озере Шира // Биология внутр. вод. № 2. С. 74.
  10. Черепнина Г.И. 1980. Потребление фитопланктона Diaptomus salinus Dad. и Daphnia magna Straus в озере Беле // Трофические связи пресноводных беспозвоночных. Ленинград: Зоол. ин-т АН СССР. С. 37.
  11. Armengol X., Miracle M.R. 2000. Diel vertical movements of zooplankton in lake La Cruz (Cuenca, Spain) // J. Plankton Res. V. 22. № 9. P. 1683.
  12. Beletsky D., Schwab D.J. 2001. Modeling circulation and thermal structure in Lake Michigan: Annual cycle and interannual variability // J. Geophysical Res.. V. 106. № C9. P. 1945.
  13. Belolipetskii V.M., Genova S.N., Gavrilova L.V., Kompaniets L.A. 2002. Mathematical models and computer programmes for the investigation of hydrophysical processes in Lake Shira // Aquat. Ecol. V. 36. P. 143.
  14. Benoit-Bird K.J., Cowles T.J., Wingard C.E. 2009. Edge gradients provide evidence of ecological interactions in planktonic thin layers // Limnol., Oceanogr. V. 54. № 4. P. 1382.
  15. Blukacz E.A., Shuter B.J., Sprules W.G. 2009. Towards understanding the relationship between wind conditions and plankton patchiness // Limnol., Oceanogr. V. 54. № 5. P. 1530.
  16. Blukacz E.A., Sprules W.G., Shuter B.J., Richards J.P. 2010. Evaluating the effect of wind-driven patchiness on trophic interactions between zooplankton and phytoplankton // Limnol., Oceanogr. V. 55. № 4. P. 1590. 10.4319/lo.2010.55.4.1590' target='_blank'>https://doi.org/doi: 10.4319/lo.2010.55.4.1590
  17. Burks R.L., Lodge D.M., Jeppesen E., Lauridsen T.L. 2002. Diel horizontal migration of zooplankton: costs and benefits of inhabiting the littoral // Freshwater Biol. V. 47. P. 343.
  18. Cawley G.F., Décima M., Mast F., Prairie J.C. 2021. The effect of phytoplankton properties on the ingestion of marine snow by Calanus pacificus // J. Plankton Res. V. 43. № 6. P. 957. https://doi.org/10.1093/plankt/fbab074
  19. Cyr H. 2017. Winds and the distribution of nearshore phytoplankton in a stratified lake // Water Res. V. 122. P. 114. https://doi.org/10.1016/j.watres.2017.05.066
  20. De Kerckhove D.T., Blukacz-Richards E.A., Shuter B.J. et al. 2015. Wind on lakes brings predator and prey together in the pelagic zone // Can. J. Fish and Aquat. Sci. V. 72. № 11. P 1652. https://doi.org/10.1139/cjfas-2015-0119
  21. Drits A.V., Arashkevich E.G., Nikishina A.B. et al. 2015. Feeding of dominant zooplankton species and their grazing impact on autotrophic phytoplankton in the Yenisei estuary in autumn // Oceanology. V. 55. № 4. P. 573. https://doi.org/10.1134/S0001437015040049
  22. Dubovskaya O.P., Tolomeev A.P., Kirillin G. et al. 2018. Effects of water column processes on the use of sediment traps to measure zooplankton non-predatory mortality: a mathematical and empirical assessment // J. Plankton Res. V. 40. № 1. P. 91. https://doi.org/10.1093/plankt/fbx066
  23. Franco-Santos R.M., Auel H., Boersma M. et al. 2018. Bioenergetics of the copepod Temora longicornis under different nutrient regimes // J. Plankton Res. V. 40. № 4. P. 420. https://doi.org/10.1093/plankt/fby016
  24. Gaevsky N.A., Kolmakov V.I., Popelnitsky V.A. et al. 2000. Evaluation of the effect of light intensity on the measurement of the photosynthetic rate in plankton microalgae by the chlorophyll fluorescence method // Rus. J. Plant. Physiol. V. 47. P. 820.
  25. Gaevsky N.A., Zotina N.A., Gorbaneva T.B. 2002. Vertical structure and photosynthetic activity of Lake Shira phytoplankton // Aquat. Ecol. V. 36. P. 65.
  26. George D.G., Winfield I.J. 2000. Factors influencing the spatial distribution of zooplankton and fish in Loch Ness, UK // Freshwater Biol. V. 43. P. 557.
  27. Grosjean P., Picheral M., Warembourg C. et al. 2004. Enumeration, measurement, and identification of net zooplankton samples using the ZOOSCAN digital imaging system // ICES J. Mar. Sci. V. 61. P. 518.
  28. Hutter K., Wang Y., Chubarenko I. 2011. Physics of Lakes. V. 1: Foundation of the Mathematical and Physical Background. Heidelberg; Dordrecht; London; New York: Springer. https://doi.org/10.1007/978-3-642-15178-1
  29. ICES Zooplankton Methodology Manual. 2006. London: Elsevier Acad. Press.
  30. Kravchuk E.S., Dubovskaya O.P., Shulepina S.P. et al. 2021. Effect of anthropogenic factors on the ecosystem of the Yenisei River anabranch within the city of Krasnoyarsk // J. Sib. Fed. Univ. Biol. V. 14(2). P. 208. (in Russian).https://doi.org/10.17516/1997-1389-0331
  31. Lapesa S., Snell T.W., Fields D.M., Serra M. 2004. Selective feeding of Arctodiaptomus salinus (Copepoda, Calanoida) on co-occurring sibling rotifer species // Freshwater Biol. V. 49. P. 1053. https://doi.org/10.1111/j.1365-2427.2004.01249.x
  32. Levesque S., Beisner B.E., Peres-Neto P.R. 2010. Meso-scale distributions of lake zooplankton reveal spatially and temporally varying trophic cascades // J. Plankton Res. V. 32. № 10. P. 1369. https://doi.org/10.1093/plankt/fbq064
  33. Longhi M.L., Beisner B.E. 2010. Patterns in taxonomic and functional diversity of lake phytoplankton // Freshwater Biol. V. 55. P. 1349. https://doi.org/10.1111/j.1365-2427.2009.02359.x
  34. Mackay E.B., Jones I.D., Thackeray S.J., Folkard A.M. 2011. Spatial heterogeneity in a small, temperate lake during archetypal weak forcing conditions // Fundam. Appl. Limnol. V. 179/1. P. 27. https://doi.org/10.1127/1863-9135/2011/0179-0027
  35. McGinnis D.F., Wüest A. 2005. Lake hydrodynamics // In book: Yearbook of Science & Technology, 4. Publisher: The McGraw-Hill Companies.
  36. Moreno-Ostos E., Cruz-Pizarro L., Basanta A., George D.G. 2009. Spatial heterogeneity of cyanobacteria and diatoms in a thermally stratified canyon-shaped reservoir // Int. Rev. Hydrobiol. V. 94. № 3. P. 245. https://doi.org/10.1002/iroh.200811123
  37. Pinel-Alloul B. 1995. Spatial heterogeneity as a multiscale characteristic of zooplankton community // Hydrobiologia. V. 300/301. P. 17.
  38. R Core Team. 2021. A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. URL: https://www.R-project.org.
  39. Reichwaldt E.S., Song H., Ghadouani A. 2013. Effects of the distribution of a toxic Microcystis bloom on the small scale patchiness of zooplankton // PLoS One. V. 8 № 6. e66674. https://doi.org/10.1371/journal.pone.0066674
  40. Rinke K., Huber A.M.R., Kempke S. et al. 2009. Lake-wide distributions of temperature, phytoplankton, zooplankton, and fish in the pelagic zone of a large lake // Limnol., Oceanogr. V. 54. № 4. P. 1306.
  41. Rogozin D.Y., Genova S.N., Gulati R.D., Degermendzhy A.G. 2010. Some generalizations based on stratification and vertical mixing in meromictic Lake Shira, Russia, in the period 2002–2009 // Aquat. Ecol. V. 44. P. 485. https://doi.org/10.1007/s10452-010-9328-6
  42. Rogozin D.Y., Tarnovsky M.O., Belolipetskii V.M. et al. 2017. Disturbance of meromixis in saline Lake Shira (Siberia, Russia): Possible reasons and ecosystem response // Limnologica. V. 66. P. 12. https://doi.org/10.1016/j.limno.2017.06.004
  43. Soulignac F., Danis P.-A., Bouffardc D. et al. 2018. Using 3D modeling and remote sensing capabilities for a better understanding of spatio-temporal heterogeneities of phytoplankton abundance in large lakes // J. Great Lakes Res. V. 44. № 4. P. 756. https://doi.org/10.1016/j.jglr.2018.05.008
  44. Tolomeyev A.P. 2002. Phytoplankton diet of Arctodiaptomus salinus (Copepoda, Calanoida) in Lake Shira (Khakasia) // Aquat. Ecol. V. 36. P. 229.
  45. Tolomeev A.P., Sushchik N.N., Gulati R.D. et al. 2010. Feeding spectra of Arctodiaptomus salinus (Calanoida, Copepoda) using fatty acid trophic markers in seston food in two salt lakes in South Siberia (Khakasia, Russia) // Aquat. Ecol. V. 44. P. 513. https://doi.org/10.1007/s10452-010-9331-y
  46. Tolomeyev A.P., Zadereev E.S., Degermendzhy A.G. 2006. Fine stratified distribution of Gammarus lacustris Sars (Crustacea: Amphipoda) in the pelagic zone of the meromictic lake Shira (Khakassia, Russia) // Dokl. Biochem. Biophys. V. 411. P. 346.
  47. Tolomeyev A.P., Zadereev Ye.S. 2005. An in situ method for the investigation of vertical distributions of zooplankton in lakes: test of a two-compartment enclosure // Aquat. Ecol. V. 39. P. 181. https://doi.org/10.1007/s10452-004-5732-0
  48. Tolomeev A.P., Anishchenko O.V., Kravchuk E.S. et al. 2014. Component elements of the carbon cycle in the Middle and Lower Yenisei River // Cont. Probl. Ecol. V. 7. № 4. P. 489. https://doi.org/10.1134/S1995425514040118
  49. Urmy S.S., Warren J.D. 2019. Seasonal changes in the biomass, distribution, and patchiness of zooplankton and fish in four lakes in the Sierra Nevada, California // Freshwater Biol. V. 64. P. 1692. https://doi.org/10.1111/fwb.13362
  50. Yolgina O.E., Tolomeev A.P., Dubovskaya O.P. 2022. Computer processing and analysis of scanned zooplankton samples: guidelines // J. Sib. Fed. Univ. Biol. V. 15 № 1. P. 5. (in Russian).https://doi.org/10.17516/1997-1389-0360
  51. Zadereev Y.S., Tolomeyev A.P. 2007. The vertical distribution of zooplankton in brackish meromictic lake with deep-water chlorophyll maximum // Hydrobiologia. V. 576. P. 69. https://doi.org/10.1007/s10750-006-0294-x
  52. Zadereev E.S., Tolomeyev A.P., Drobotov A.V. et al. 2010. The vertical distribution and abundance of Gammarus lacustris in the pelagic zone of the meromictic lakes Shira and Shunet (Khakassia, Russia) // Aquat. Ecol. V. 44. P. 531. https://doi.org/10.1007/s10452-010-9329-5
  53. Zadereev E.S., Drobotov A.V., Lopatina T.S. et al. 2021. Comparison of rapid methods used to determine the concentration, size structure and species composition of algae // J. Sib. Fed. Univ. Biol. V. 14. № 1. P. 5 (in Russian).https://doi.org/10.17516/1997-1389-0338
  54. Zotina T.A., Tolomeyev A.P., Degermendzhy N.N. 1999. Lake Shira, a Siberian salt lake: ecosystem structure and function. 1. Major physico-chemical and biological features // Int. J. Salt Lake Res. V. 8. P. 211.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2.

Жүктеу (1MB)
3.

Жүктеу (47KB)
4.

Жүктеу (92KB)

© А.П. Толомеев, О.П. Дубовская, Е.С. Кравчук, О.В. Анищенко, А.В. Дроботов, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>