Unique Haplotypes of Artemia salina (Crustacea, Branchiopoda, Anostraca) in Hypersaline Lake Sasyk-Sivash (Crimea)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The genetic structure of the population of the Artemia salina (L., 1758) species from the hypersaline lake Sasyk-Sivash was studied on the basis of a fragment of the gene of the first subunit of cytochrome oxidase c (COI) of mitochondrial DNA. The phylogeny reconstruction was performed using all available nucleotide sequences of this gene for the salina species in the GenBank (NCBI) international database. Genealogical connections between COI haplotypes have been established and phylogeographic patterns have been revealed. Common haplotypes have been noted in Western Mediterranean populations, which may be a consequence of their location in a single migration corridor of birds, which, as is known, contribute to the passive spread of dormant stages of artemia. Geographically isolated groups of populations from Libya, Tunisia, Egypt, Cyprus and Crimea are characterized by unique haplotypes that are not currently found in other Mediterranean populations. It is suggested that unique haplotypes may be endemic to geographically remote regions.

About the authors

A. O. Lantushenko

Sevastopol State University

Email: meger_yakov@mail.ru
Russia, Sevastopol

Ya. V. Meger

Sevastopol State University

Author for correspondence.
Email: meger_yakov@mail.ru
Russia, Sevastopol

A. V. Gadzhi

Sevastopol State University

Email: meger_yakov@mail.ru
Russia, Sevastopol

E. V. Anufriieva

Sevastopol State University; Federal Research Center A.O. Kovalevsky Institute of Biology of the South Seas of the Russian Academy of Sciences

Email: meger_yakov@mail.ru
Russia, Sevastopol; Russia, Sevastopol

N. V. Shadrin

Sevastopol State University; Federal Research Center A.O. Kovalevsky Institute of Biology of the South Seas of the Russian Academy of Sciences

Email: meger_yakov@mail.ru
Russia, Sevastopol; Russia, Sevastopol

References

  1. Балушкина Е.В., Голубков С.М., Голубков М.С. и др. 2009. Влияние абиотических и биотических факторов на структурно-функциональную организацию экосистем соленых озер Крыма // Журн. общ. биол. Т. 70. № 6. С. 504.
  2. Adamowicz S.J., Purvis A. 2005. How many branchiopod crustacean species are there? Quantifying the components of underestimation // Global Ecol. Biogeogr. V. 14. P. 455. https://doi.org/10.1111/j.1466-822X.2005.00164.x
  3. Adamowicz S.J., Menu-Marque S., Hebert P.D., Purvis A. 2007. Molecular systematics and patterns of morphological evolution in the Centropagidae (Copepoda: Calanoida) of Argentina // Biol. J. Linnean Soc. V. 90. P. 279. https://doi.org/10.1111/j.1095-8312.2007.00723.x
  4. Anufriieva E.V., Shadrin N.V. 2015. Morphometric variability of Arctodiaptomussalinus (Copepoda) in the Mediterranean-Black Sea region // Zool. Res. V. 18. № 36(6). P. 328.
  5. Anufriieva E., Kolesnikova E., Revkova T. et al. 2022. Human-Induced Sharp Salinity Changes in the World’s Largest Hypersaline Lagoon Bay Sivash (Crimea) and Their Effects on the Ecosystem // Water. V. 14 (3)403. https://doi.org/10.3390/w14030403
  6. De Gelas K., De Meester L. 2005. Phylogeography of Daphnia magna in Europe // Mol. Ecol. V. 14. P. 753. https://doi.org/10.1111/j.1365-294X.2004.02434.x
  7. De Meester L., Gómez A., Okamura B., Schwenk K. 2002. The Monopolization hypothesis and the dispersal-gene flow paradox in aquatic organisms // Acta Oecologica. V. 23. P. 121. https://doi.org/10.1016/S1146-609X(02)01145-1
  8. De Vos S., Rombauts S., Coussement L. et al. 2021. The genome of the extremophile Artemia provides insight into strategies to cope with extreme environments // BMC Genom. V. 22 (1). P. 1. https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-021-07937-z
  9. Eimanifar A., Van Stappen G., Marden B., Wink M. 2014. Artemia biodiversity in Asia with the focus on the phylogeography of the introduced American species Artemia franciscana Kellogg, 1906. // Mol. Phylogen. and Evol. V. 79. P. 392. https://doi.org/10.1016/j.ympev.2014.06.027
  10. Frisch D., Green A.J., Figuerola J. 2007. High dispersal capacity of a broad spectrum of aquatic invertebrates via waterbirds // Aquat. Sci. V. 69(4). P. 568. https://doi.org/10.1007/s00027-007-0915-0
  11. Fontaneto D. 2019. Long-distance passive dispersal in microscopic aquatic animals // Mol. Ecol. V. 7. P. 10. https://doi.org/10.1186/s40462-019-0155-7
  12. Green A.J., Sánchez M.I., Amat F. et al. 2005. Dispersal of invasive and native brine shrimps Artemia (Anostraca) via waterbirds // Limnol., Oceanogr. V. 50. P. 737.
  13. Gómez A., Carvalho G.R., Lunt D.H. 2000. Phylogeography and regional endemism of a passively dispersing zooplankter: mitochondrial DNA variation in rotifer resting egg banks // Proc. Royal Soc. Series B. V. 267. P. 2189. https://doi.org/10.4319/lo.2005.50.2.0737
  14. Gómez A., Serra M., Carvalho G.R., Lunt D.H. 2002. Speciation in ancient cryptic species complexes: evidence from the molecular phylogeny of Brachionus plicatilis (Rotifera) // Evolution. V. 56. P. 1431. https://doi.org/10.1111/j.0014-3820.2002.tb01455.x
  15. Gómez A., Montero-Pau J., Lunt D.H. et al. 2007. Persistent genetic signatures of colonization in Brachionus manjavacas rotifers in the Iberian Peninsula // Mol. Ecol. V. 16. P. 3228. https://doi.org/10.1111/j.1365-294X.2007.03372.x
  16. Hebert P.D. 1998. Variable environments and evolutionary diversification in inland waters // Adv. Mol. Ecol. P. 267.
  17. Hebert P.D., Witt J.D., Adamowicz S.J. 2003. Phylogeographical patterning in Daphnia ambigua: Regional divergence and intercontinental cohesion // Limnol., Oceanogr. V. 48. P. 261. https://doi.org/10.4319/lo.2003.48.1.0261
  18. Hessen D.O., Jensen T.C., Walseng B. 2019. Zooplankton diversity and dispersal by birds; insights from different geographical scales // Frontiers in Ecol. and Evol. V. 20. P. 7. https://doi.org/10.3389/fevo.2019.00074
  19. Hall T., Biosciences I., Carlsbad C. 2011. BioEdit: an important software for molecular biology // GERF Bull Biosci. V. 2(1) P. 60.
  20. Ishida S., Taylor D.J. 2007. Mature habitats associated with genetic divergence despite strong dispersal ability in an arthropod // BMC Evol. Biol. V. 7. P. 52. https://doi.org/10.1186/1471-2148-7-52
  21. Kumar S., Stecher G., Li M. et al. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms // Mol. Biol. Evol. V. 35(6). P. 1547. https://doi.org/10.1093/molbev/msy096
  22. Lantushenko A., Meger Y., Gadzhi A. et al. 2022. Artemia spp. (Crustacea, Anostraca) in Crimea: New Molecular Genetic Results and New Questions without Answers // Water. V. 14(17). P. 2617. https://doi.org/10.3390/w14172617
  23. Le J., Cho B.C., Park J.S. 2022. Transcriptomic analysis of brine shrimp Artemia franciscana across a wide range of salinities // Mar. Genom. V. 61: 100919. https://doi.org/10.1016/j.margen.2021.100919
  24. Leigh J.W., Bryant D. 2015. POPART: full-feature software for haplotype network construction // Meth. Ecol. and Evol. V. 6. № 9. P. 1110. https://doi.org/10.1111/2041-210X.12410
  25. Marden B., Brown P., Bosteels T. 2020. Great Salt Lake Artemia: ecosystem functions and services with a global reach // Great Salt Lake Biol. P. 175. https://doi.org/10.1080/10454438.2018.1484838
  26. Mergeay J., Verschuren D., De Meester L. 2005. Cryptic invasion and dispersal of an American Daphnia in East Africa // Limnol., Oceanogr. V. 50. P. 1278. https://doi.org/10.4319/lo.2005.50.4.1278
  27. Munoz J., Gomez A., Green A.J. et al. 2008. Phylogeography and local endemism of the native Mediterranean brine shrimp Artemia salina (Branchiopoda: Anostraca) // Mol. Ecol. V. 17(13). P. 3160. https://doi.org/10.1111/j.1365-294X.2008.03818.x
  28. Muñoz J., Amat F., Green A.J. et al. 2013. Bird migratory flyways influence the phylogeography of the invasive brine shrimp Artemia franciscana in its native American range // Peer J. V. 1. P. 200. https://doi.org/10.7717/peerj.200
  29. Naceur H.B., Romdhan M.S., Stappen G.V. 2020. Potential Use of fatty acid profile for Artemia spp. discrimination // Inland Water Biol. V. 13. № 3. P. 434. https://doi.org/10.1134/S199508292003013X
  30. Paland S., Colbourne J.K., Lynch M. 2005. Evolutionary history of contagious asexuality in Daphnia pulex // Evolution. V. 59. P. 800. https://doi.org/10.1111/j.0014-3820.2005.tb01754.x
  31. Penton E.H., Hebert P.D., Crease T.J. 2004. Mitochondrial DNA variation in North American populations of Daphnia obtusa: continentalism or cryptic endemism? // Mol. Ecol. V. 13. P. 97. https://doi.org/10.1046/j.1365-294X.2003.02024.x
  32. Ronquist F., Teslenko M., Van Der Mark P. et al. 2012. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space // Syst. Biol. V. 61. P. 539. https://doi.org/10.1093/sysbio/sys029
  33. Rozas J. 2017. DnaSP 6: DNA sequence polymorphism ana-lysis of large data sets // Mol. Biol. Evol. V. 34. P. 3299. https://doi.org/10.1093/molbev/msx248
  34. Sainz-Escudero L., López-Estrada E.K., Rodríguez-Flores P.C., García-París M. 2021. Settling taxonomic and nomenclatural problems in brine shrimps, Artemia (Crustacea: Branchiopoda: Anostraca), by integrating mitogenomics, marker discordances and nomenclature rules // Peer J. V. 9. P. 10865. https://doi.org/10.7717/peerj.10865
  35. Sainz-Escudero L., López-Estrada E.K., Rodríguez-Flores P.C., García-París M. 2022. Brine shrimps adrift: Historical species turnover in Western Mediterranean Artemia (Anostraca) // Biol. Invasions. V. 24. P. 2477. https://doi.org/10.1007/s10530-022-02779-6
  36. Sanchez M.I., Paredes I., Lebouvier M., Green A.J. 2016. Functional role of native and invasive filter-feeders, and the effect of parasites: learning from hypersaline ecosystems // PLoS One. V. 11(8). e0161478. https://doi.org/10.1371/journal.pone.0161478
  37. Shadrin N., Stetsiuk A., Anufriieva E. 2022. Differences in mercury concentrations in water and hydrobionts of the crimean saline lakes: does only salinity matter? // Water. V. 14(17): e2613. https://doi.org/10.3390/w14172613
  38. Templeton A., Crandall K., Sing C. 1992. A cladistic analysis of phenotypic associations with haplotypes inferredfrom restriction endonuclease mapping and DNA sequencedata. III. Cladogram estimation // Genetics. № 132. P. 619. https://doi.org/10.1093/genetics/132.2.619
  39. Van Stappen G., Sui L., Hoa V.N. et al. 2020. Review on integrated production of the brine shrimp Artemia in solar salt ponds // Rev. Aquac. V. 12. P. 1054. https://doi.org/10.1111/raq.12371
  40. Weider L.J., Hobaek A., Hebert P.D., Crease T.J. 1999. Holarctic phylogeography of an asexual species complex-II. Allozymic variation and clonal structure in Arctic Daphnia // Mol. Ecol. V. 8. P. 1. https://doi.org/10.1046/j.1365-294X.1999.00522.x
  41. Zierold T., Hanfling B., Gómez A. 2007. Recent evolution of alternative reproductive modes in the “living fossil” Triops cancriformis // BMC Evol. Biol. V. 7. P. 161. https://doi.org/10.1186/1471-2148-7-161

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (2MB)
3.

Download (392KB)

Copyright (c) 2023 А.О. Лантушенко, Я.В. Мегер, А.В. Гаджи, Е.В. Ануфриева, Н.В. Шадрин

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies