Комета 2I/Borisov в сравнении с кометами Солнечной системы

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В кратком обзоре обобщены данные по химическому и минеральному составу, а также по физическим свойствам первой внесолнечной кометы 2I/Borisov, полученные по наблюдениям, которые проводились с сентября 2019 г. до конца марта 2020 г. Отмечено, что качественно химический состав летучих и минеральной компоненты кометы 2I/Borisov аналогичен составу комет Солнечной системы, но есть отличия, указывающие на специфические условия формирования ее ядра в околозвездном газопылевом диске. Различные темпы выделения молекул СО и H2O в окрестности перигелия свидетельствуют о возможной гетерогенности ядра кометы, сформировавшегося из более однородных ледяных блоков, но отличающихся между собой по составу. Эти составляющие блоки могли образоваться в широком интервале радиальных расстояний: от линии льдов Н2О до линии льдов CO. Их аккумуляция в ядро кометы свидетельствует о крупномасштабном перемешивании протокометных тел в околозвездном диске. В составе кометной комы 2I/Borisov не были обнаружены спектры мелкокристаллических магниевых силикатов, что может быть интерпретировано как отсутствие переноса значительного количества газопылевого вещества из внутренних горячих регионов диска наружу, в зону образования протокометных тел.

Об авторах

В. А. Дорофеева

Институт геохимии и аналитической химии им. В.И. Вернадского РАН

Email: dorofeeva@geokhi.ru
Россия, Москва

Г. В. Борисов

Государственный астрономический институт им. П.К. Штернберга МГУ им. М.В. Ломоносова

Email: dorofeeva@geokhi.ru
Россия, Москва

Б. М. Шустов

Институт астрономии РАН

Автор, ответственный за переписку.
Email: dorofeeva@geokhi.ru
Россия, Москва

Список литературы

  1. Дорофеева В.А. Химический и изотопный состав кометы 67Р/Чурюмова−Герасименко (обзор результатов космической миссии “Rosetta-Philae”). Следствия для космогонии и космохимии // Астрон. вестн. 2020. Т. 54. № 2. С. 110–134. (Dorofeeva V.A. Chemical and isotope composition of comet 67P/Churyumov-Gerasimenko: The Rosetta-Philae mission results reviewed in the context of cosmogony and cosmochemistry // Sol. Syst. Res. 2020. V. 54. № 2. P. 96−120.)
  2. Дорофеева В.А. Роль радиального транспорта при формировании малых тел внешней Солнечной системы // Астрон. вестн. 2022. Т. 56. № 3. С. 183–197. (Dorofeeva V.A. The role of radial transport in forming minor bodies of the outer Solar System // Sol. Syst. Res. 2021. V. 56. № 3. P. 168−182.)
  3. Дорофеева В.А., Макалкин А.Б. Эволюция ранней Солнечной системы. Космохимические и физические аспекты. М.: Едиториал УРСС, 2004. 264 с.
  4. Bailer-Jones C.A.L., Farnocchia D., Ye Q., Meech K.J., Micheli M. A search for the origin of the interstellar comet 2I/Borisov // Astron. and Astrophys. 2020. V. 634. A14. 6 p.
  5. Bannister M.T., Opitom C., Fitzsimmons A., Moulane Y., Jehin E., Seligman D., Rousselot P., Knight M.M., Marsset M., Schwamb M.E. and 4 co-authors. Interstellar comet 2I/Borisov as seen by MUSE: C2, NH2 and red CN detections // https://arxiv.org/abs/2001.11605. 2020. Submitted to Am. Astron. Soc. J.
  6. Biver N., Bockelée-Morvan D., Paubert G., Moreno R., Crovisier J., Boissier J., Bertrand E., Boussier H., Kugel F., McKay A., Dello Russo N., DiSanti M.A. The extraordinary composition of the blue comet C/2016 R2 (PanSTARRS) // Astron. and Astrophys. 2018. V. 619. A127. 13 p.
  7. Bockelée-Morvan D., Biver N. The composition of cometary ices // Philosophical Transactions of the Royal Society A. 2017. V. 375. Issue 2097, id.20160252
  8. Bodewits D., Noonan J.W., Feldman P.D., Bannister M.T., Farnocchia D., Harris W.M., Li J.-Y., Mandt K., Parker J.Wm., Xing Z. The carbon monoxide-rich interstellar comet 2I/Borisov // Nature Astron. 2020. V. 4. P. 867–871.
  9. Bolin B.T., Lisse C.M., Kasliwal M.M., Quimby R., Tan H., Copperwheat C., Fernandez Y., Lin Z.-Y., Morbidelli A., Abe L. and 46 co-authors. Characterization of the nucleus, morphology and activity of interstellar comet 2I/Borisov by optical and near-infrared GROWTH, Apache Point, IRTF, ZTF and Keck observations // Astrophys. J. 2020.V. 160. Iss. 1. id. 26. 16 p.
  10. Busarev V.V., Petrova E.V., Shcherbina M.P., Ikonnikova N.P., Burlak M.A., Belinski A.A. Interstellar comet 2I/Borisov: dust composition from multiband photometry and modelling // Mon. Notic. Roy. Astron. Soc. 2021. V. 502. Iss. 2. P. 1882–1894.
  11. Cameron A.G.W. Physics of the primitive solar accretion disk // Moon and Planets. 1978. V. 18. № 1. P. 5−40.
  12. Cameron A.G.W., Pine M.R. Numerical models of the primitive solar nebula // Icarus. 1973. V. 18. Iss. 3. P. 377−406.
  13. Cordiner M.A., Milam S.N., Biver N., Bockelée-Morvan D., Roth N.X., Bergin E.A., Jehin E., Remijan A.J., Charnley S.B., Mumma M.J. and 5 co-authors. Unusually high CO abundance of the first active interstellar comet // Nat. Astron. 2020. V. 4. P. 861−866.
  14. Dybczyński P.A., Królikowska M., Wysoczańska R. Kruger 60 as a home system for 2I/Borisov - a case study // arXiv:1909.10952v2. 2019. 11 p.
  15. Fitzsimmons A., Hainaut O., Meech K., Jehin E., Moulane Y., Opitom C., Yang B., Keane J.V., Kleyna J.T., Micheli M., Snodgrass C. Detection of CN gas in interstellar object 2I/Borisov // Astrophys. J. Lett. 2019. V. 885. Iss. 1. id. L9. 6 p.
  16. Fray N., Schmitt B. Sublimation of ices of astrophysical interest: a bibliographic review // Planet. and Space Sci. 2009. V. 57(14−15). P. 2053−2080.
  17. Guilbert-Lepoutre A. Survival of amorphous water ice on Centaurs // Astron. J. 2012. V. 144. Iss. 4. id. 97. 7 p.
  18. Gulkis S., Allen M., von Allmen P., Beaudin G., Biver N., Bockelée-Morvan D., Choukroun M., Crovisier J., Davidsson B. J. R., Encrenaz P. and 14 co-authors. Subsurface properties and early activity of comet 67P/Churyumov-Gerasimenko // Science. 2015. V. 347. Iss. 6220. aaa 0709. https://doi.org/10.1126/science.aaa0709
  19. Guzik P., Drahus M., Rusek K., Waniak W., Cannizzaro G., Marazuela I.P. Interstellar Comet gb00234 // The Astronomer’s Telegram. 2019. № 13100.
  20. Guzik P., Drahus M., Rusek K., Waniak W., Cannizzaro G., Marazuela I.P. Initial characterization of interstellar comet 2I/Borisov // Nat. Astron. 2020. V. 4. P. 53−57.
  21. Guzik P., Drahus M. Gaseous atomic nickel in the coma of interstellar comet 2I/Borisov // Nature. 2021. V. 593. Iss. 7859. P. 375−378.
  22. Hallan T., Wiegert P. The dynamics of interstellar asteroids and comets within the Galaxy: An assessment of local candidate source regions for 1I/`Oumuamua and 2I/Borisov // arXiv:1911.02473v2. 2020. Submeeted to the Astron. J.
  23. Hansen K.C., Altwegg K., Berthelier J.-J., Bieler A., Biver N., Bockelée-Morvan D., Calmonte U., Capaccioni F., Combi M.R., de Keyser J., and 16 co-authors, and ROSINA Team. Evolution of water production of 67P/Churyumov–Gerasimenko: An empirical model and a multi-instrument study // Mon. Notic. Roy. Astron. Soc. 2016. V. 462. S491–S506.
  24. Hayashi C. Structure of the solar nebula, growth and decay of magnetic fields and effects of magnetic and turbulent viscosities on the nebula // Prog. Theor. Phys. Suppl. 1981. № 70. P. 35−53.
  25. Hui M.-T., Ye Q.-Z., Fohring D., Hung D., Tholen D.J. Physical characterisation of interstellar comet 2I/2019 Q4 (Borisov) // Astron. J. 2020. V. 160. Iss. 2. id. 92. 17 p.
  26. Hutsemékers D., Manfroid J., Jehin E., Opitom C., Moulane Y. Fe and Ni in cometary atmospheres. Connections between the Ni/Fe abundance ratio and chemical characteristics of Jupiter-family and Oort-cloud comets // arXiv:2107.05932. 2021. Accepted for publication in Astron. and Astrophys. Lett.
  27. Jewitt D. The active centaurus // Astron. J. 2009. V. 137. Issue 5. P. 4296–4312,
  28. Jewitt D. Color systematics of comets and related bodies // Astron. J. 2015. V. 150. P. 201−219.
  29. Jewitt D., Luu J. Initial characterization of interstellar comet 2I/2019 Q4 (Borisov) // Astrophys. J. Lett. 2019. V. 886. № 2. id. L29.
  30. Jewitt D., Hui M.-T., Kim Y., Mutchler M., Weaver H., Agarwa J. The Nucleus of Interstellar Comet 2I/Borisov // The Astrophysical Journal Letters. 2020. V. 888. Issue 2. Id L23. 8 p.
  31. Jorda L., Crovisier J., Green D.W.E. The correlation between visual magnitudes and water production rates // Proc. Conf. Asteroids, Comets, Meteors. Baltimore. Maryland. USA: LPI Contribution, 2008. № 1405. Paper 8046
  32. Kareta Th., Andrews J., Noonan J., Harris W.M., Smith N., O’Brien P., Sharkey B.N.L., Reddy V., Springmann A., Lejoly C. Carbon chain depletion of 2I/Borisov // Astrophys. J. Lett. 2020. V. 889. № 2. id. L38. 6 p.
  33. Kochergin A., Zubko E., Husárik M., Ivanova O.V., Videen G., Chornaya E., Kim S.S., Zheltobryukhov M., Luk’yanyk I. Velocity of dust ejected from interstellar comet 2I/Borisov // Res. Notes Am. Astron. Soc. 2019. V. 3. Iss. 10. id. 152.
  34. Lee S., von Allmen P., Allen M., Beaudin G., Biver N., Bockelée-Morvan D., Choukroun M., Crovisier J., Encrenaz P., Frerking M., and 16 co-authors. Spatial and diurnal variation of water outgassing on comet 67P/Churyumov-Gerasimenko observed from Rosetta/MIRO in August 2014 // Astron. and Astrophys. 2015. V. 583. id. A5.
  35. Lee C.-H., Lin H.-W., Chen Y.-T., Yen S.-F. FLAMINGOS-2 infrared photometry of 2I/Borisov // Res. Notes Am. Astron. Soc. 2019. V. 3. № 12. id. 184.
  36. deLeón J., Licandro J., Serra-Ricart M., Cabrera-Lavers A., Font Serra J., Scarpa R., de la Fuente Marcos C., de la Fuente Marcos R. Interstellar visitors: A physical characterization of comet C/2019 Q4 (Borisov) with OSIRIS at the 10.4m GTC // Res. Notes Am. Astron. Soc. 2019. V. 3. № 9. P. 131.
  37. deLeón J., Licandro J., de la Fuente Marcos C., de la Fuente Marcos R., Lara L.M., Moreno F., Pinilla-Alonso N., Serra-Ricart M., De Prá M., Tozzi G.P., and 8 co-authors. Visible and near-infrared observations of interstellar comet 2I/Borisov with the 10.4-m GTC and the 3.6-m TNG telescopes // Mon. Notic. Roy. Astron. Soc. 2020. V. 495. Iss. 2. P. 2053–2062.
  38. Lin H.W., Lee C-H., Gerdes D.W., Adams F.C., Becker J., Napier K., Markwardt L. Detection of diatomic carbon in 2I/Borisov // Astrophys. J. Lett. 2020. V. 889. Iss. 2. id. L30. 5 p.
  39. Lodders K. Solar system abundances of the elements // Principles and Perspectives in Cosmochemistry / Eds: Goswami A., Reddy B.E. Astrophys. and Space Sci. Proc. Berlin–Heidelberg: Springer Verlag, 2010. P. 379–417.
  40. Lodders K., Fegley В., Jr. Planetary Scientist’s Companion. N.Y.: Oxford Univ. Press, 1998. 371 p.
  41. Mandt K.E., Mousis O., Marty B., Cavalié T., Harris W., Hartogh P., Willacy K. Constraints from comets on the formation and volatile acquisition of the planets and satellites // Space Sci. Rev. 2015. V. 197. P. 297–342.
  42. Manfroid J., Hutsemékers D., Jehin E. Iron and nickel atoms in cometary atmospheres even far from the Sun // Nature. 2021. V. 593. P. 372–374.
  43. Marboeuf U., Thiabaud A., Alibert Y., Cabral N., Benz W. From stellar nebula to planetesimals // Astron. and Astrophys. 2014. V. 570. id. A35.
  44. Marboeuf U., Schmitt B. How to link the relative abundances of gas species in coma of comets to their initial chemical composition? // Icarus. 2014. V. 242. P. 225–248.
  45. Martin R.G., Livio M. On the evolution of the snow line in protoplanetary discs // Mon. Notic. Roy. Astron. Soc. 2012. V. 425. L6–L9.
  46. McKay A.J., Cochran A.L., Dello Russo N., DiSanti M.A. Detection of a water tracer in interstellar comet 2I/Borisov // Astrophys. J. Lett. 2020. V. 889. Iss. 1. id. L10. 5 p.
  47. Meech K.J., Weryk R., Micheli M., Kleyna J.T., Hainaut O.R., Jedicke R., Wainscoat R.J., Chambers K.C., Keane J.V., Petric A., and 8 co-authors. A brief visit from a red and extremely elongated interstellar asteroid // Nature. 2017. V. 552. Iss. 7685. P. 378–381.
  48. Mousis O., Lunine J.I., Luspay-Kuti A., Guillot T., Marty B., Ali-Dib M., Wurz P., Altwegg K., Bieler A., Hässig M., and 3 co-authors. Protosolar nebula origin for the ices agglomerated by comet 67P/Churyumov-Gerasimenko // Astrophys. J. Lett. 2016. V. 819. Iss. 2. id. L33. 5 p.
  49. Opitom C., Fitzsimmons A., Jehin E., Moulane Y., Hainaut O., Meech K.J., Yang B., Snodgrass C., Micheli M., Keane J.V., Benkhaldoun Z., Kleyna J.T. 2I/Borisov: A C2-depleted interstellar comet // Astron. and Astrophys. 2020. V. 631. id. L8. 5 p.
  50. Opitom C., Jehin E., Hutsemékers D., Shinnaka Y., Manfroid J., Rousselot P., Raghuram S., Kawakita H., Fitzsimmons A., Meech K., and 4 co-authors. The similarity of the interstellar comet 2I/Borisov to Solar system comets from high resolution optical spectroscopy // Astron. and Astrophys. 2021. V. 650. id. L19. 8 p.
  51. Podolak M., Zucker S. A note on the snow line in protostellar accretion disks // Meteoritics and Planet. Sci. 2004. V. 39. Iss. 11. P. 1859–1868.
  52. Rusol A.V., Dorofeeva V.A. Thermal evolution of the nucleus of the comet 67P for 120 years: numerical simulations // Open Astronomy. 2018. V. 27. № 1. P. 175–182.
  53. Xing Z.,Bodewits D., Noonan J., Bannister M.T. Water production rates and activity of interstellar comet 2I/Borisov // Astrophys. J. Lett. 2020. V. 893. Iss. 2. id. L48. 10 p.
  54. Yamamoto T. Formation environment of cometary nuclei in the primordial solar nebula // Astron. and Astrophys. 1985. V. 142. № 1. P. 31–36.
  55. Yang B., Li A., Cordiner M.A., Chang C.-S., Hainaut O.R., Williams J.P., Meech K.J., Keane J.V., Villard E. Compact pebbles and the evolution of volatiles in the interstellar comet 2I/Borisov // Nat. Astron. 2021. V. 5. P. 586–593.
  56. Ye Q., Kelley M.S.P., Bolin B.T., Bodewits D., Farnocchia D., Masci F.J., Meech K.J., Micheli M., Weryk R., Bellm E.C., and 8 co-authors. Pre-discovery activity of new interstellar comet 2I/Borisov beyond 5 AU // Astron. J. 2020. V. 159. Iss. 2. id.77. 9 p.
  57. Zubko E., Chornaya E., Videen G., Kim S.S. Clues to understanding the microphysics of dust in the interstellar comet C/2019 Q4 (Borisov) // Res. Notes Am. Astron. Soc. 2019. V. 3. Iss. 9. id. 138.

© В.А. Дорофеева, Г.В. Борисов, Б.М. Шустов, 2023

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах