Internal Structure of the Lunar Mantle: Matching of Geochemical and Geophysical Models

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

There are serious contradictions between the geophysical and geochemical classes of models of the chemical composition and internal structure of the Moon, associated with the assessment of the abundance of the main oxides. The search for a potential consensus between the models was carried out on the basis of a set of geophysical and geochemical data using the Monte-Carlo method using the Markov chain scheme in combination with a method of minimization of the Gibbs free energy. The influence of the chemical composition and mineralogy of several conceptual models on the internal structure of the Moon has been studied. Two classes of chemical composition models are considered—the E models with terrestrial values of Al2O3 and CaO and M models with their higher content, as well as two classes of the most popular geochemical models, the Taylor Whole Moon (TWM) and Lunar Primitive Upper Mantle (LPUM) models, with ~45 wt % SiO2, but with different concentrations of refractory oxides and FeO. In both classes of E and M models, the lunar mantle is enriched in silica (~50 wt % SiO2) and FeO (11–13 wt %, Mg# 79–81) relative to the bulk composition of the silicate Earth (BSE, ~45 wt % SiO2, ~8 wt % FeO, Mg# 89). Such high concentrations of SiO2 and FeO become the determining factors for understanding the features of the mineral, velocity, and density structure of the lunar mantle. For the E and M models and geochemical models TWM and LPUM, the speed of sound and the density of stable phase associations are calculated. For E and M models, good agreement was obtained between the velocities of P- and S-waves and seismic sounding data from the Apollo program, which supports the idea of a silica-rich (olivine-pyroxenite) upper mantle. Unlike the Earth’s upper mantle, the dominant mineral in the Moon’s upper mantle is low-calcium orthopyroxene, not olivine. In contrast, the sound velocities of silica-unsaturated compositions, both FeO and Al2O3 enriched (TWM) and depleted (LPUM) models, do not match the seismic signatures. Thermodynamically justified restrictions on the chemical composition, mineralogy, and physical characteristics of the mantle based on the E and M models make it possible to eliminate some contradictions between the geochemical and geophysical classes of models of the internal structure of the Moon. Simultaneous enrichment in ferrous iron and silica is difficult to reconcile with the hypothesis of the formation of the Moon as a result of a giant impact from the substance of the Earth’s primitive mantle or from the substance of a shock body (bodies) of chondrite composition. Limitations on lunar concentrations of FeO and SiO2 probably correspond to the parent bodies of some achondrites.

About the authors

O. L. Kuskov

Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, Moscow, Russia

Email: ol_kuskov@mail.ru
Россия, Москва

E. V. Kronrod

Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, Moscow, Russia

Email: ol_kuskov@mail.ru
Россия, Москва

V. A. Kronrod

Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, Moscow, Russia

Author for correspondence.
Email: ol_kuskov@mail.ru
Россия, Москва

References

  1. Галимов Э.М. Проблема происхождения Луны. Основные направления геохимии. К 100-летию со дня рождения А.П. Виноградова / Ред. Галимов Э.М. М.: Наука, 1995. С. 8–43.
  2. Галимов Э.М. Особые черты геохимии Луны и Земли, определяемые механизмом образования системы Земля–Луна (Доклад на 81-й Международной метеоритной конференции, Москва, июль 2018) // Геохимия. 2019. Т. 64 (8). С. 762–776.
  3. Гудкова Т.В., Раевский C.Н. О структуре собственных колебаний Луны // Астрон. вестн. 2013. Т. 47. С. 13–20. (Gudkova T.V., Raevskiy S.N. Spectrum of the free oscillations of the Moon // Sol. Syst. Res. 2013.V. 47. P. 11–19.)
  4. Кронрод В.А., Кусков О.Л. Моделирование химического состава и размеров ядра луны инверсией сейсмических и гравитационных данных // Физика Земли. 2011. № 8. С. 62–80.
  5. Кронрод В.А., Кронрод Е.В., Кусков О.Л. Ограничения на тепловой режим и содержание урана в Луне по сейсмическим данным // Докл. РАН. 2014. Т. 455. № 6. С. 698–702.
  6. Кусков О.Л., Кронрод В.А. Геохимические ограничения на модели состава и теплового режима Луны по сейсмическим данным // Физика Земли. 2009. № 9. С. 25–40.
  7. Кусков О.Л., Кронрод Е.В., Кронрод В.А. Геохимические ограничения на “холодные” и “горячие” модели внутреннего строения Луны: 1. Валовый состав // Астрон. вестн. 2018. Т. 52. С. 481–494. (Kuskov O.L., Kronrod E.V., Kronrod V.A. Geochemical constraints on the cold and hot models of the Moon’s interior: 1. Bulk composition // Sol. Syst. Res. 2018. V. 52. P. 467–479.)https://doi.org/10.1134/S0038094618060047
  8. Кусков О.Л., Кронрод В.А., Прокофьев А.А. Термическая структура и мощность литосферной мантии Сибирского кратона по данным сверхдлинных сейсмических профилей Кратон и Кимберлит // Физика Земли. 2011. № 3. С. 3–23.
  9. Кусков О.Л., Кронрод Е.В., Matsumoto Koji, Кронрод В.А. Физические свойства и внутреннее строение центральной области Луны // Геохимия. 2021. Т. 66. № 11. С. 972–992. https://doi.org/10.31857/S0016752521110066
  10. Маров М.Я., Ипатов С.И. Процессы миграции в Солнечной системе и их роль в эволюции Земли и планет // Успехи Физ. Наук. 2023. Т. 193 (1). С. 2–32.
  11. Рускол Е.Л. Происхождение системы Земля–Луна. М.: ОИФЗ РАН, 1997. 16 с.
  12. Armytage R.M.G., Georg R.B., Williams H.M., Halliday A.N. Silicon isotopes in lunar rocks: Implications for the Moon’s formation and the early history of the Earth // Geochim. et Cosmochim. Acta. 2012. V. 77. P. 504–514.
  13. Asphaug E. Impact origin of the Moon? // Annu. Rev. Earth and Planet. Sci. 2014. V. 42. P. 551–578.
  14. Budde G., Burkhardt C., Kleine T. Molybdenum isotopic evidence for the late accretion of outer Solar System material to Earth // Nature Astron. 2019. V. 3. P. 736–741.
  15. Cano E.J., Sharp Z.D., Shearer C.K. Distinct oxygen isotope compositions of the Earth and Moon // Nature Geosci. 2020. V. 13. P. 270–274.
  16. Canup R.M. Lunar origin by giant impact: An evolving legacy of Apollo // 50th Lunar and Planet. Sci. Conf. 2019 (LPI Contrib. № 2132). P. 2044.
  17. Canup R.M., Righter K., Dauphas N., Pahlevan K., Ćuk M., Lock S.J., Stewart S.T., Salmon J., Rufu R., Nakajima M., Magna T. Origin of the Moon. In: New Views on the Moon II. arXiv:2103.02045v1 [astro-ph.EP]. 2021.
  18. Charlier B., Grove T.L., Namur O., Holtz F. Crystallization of the lunar magma ocean and the primordial mantle-crust differentiation of the Moon // Geochim. et Cosmochim. Acta. 2018. V. 234. P. 50–69. https://doi.org/10.1016/j.gca.2018.05.006
  19. Ćuk M., Stewart S.T. Making the Moon from a fast-spinning Earth: A giant impact followed by resonant despinning // Science. 2012. V. 338. P. 1047–1052.
  20. Dauphas N., Burkhardt C., Warren P.H., Fang-Zhen T. Geochemical arguments for an Earth-like Moon-forming impactor // Phil. Trans. Roy. Soc. A. 2014. V. 372. 20130244. https://doi.org/10.1098/rsta.2013.0244
  21. Dauphas N. The isotopic nature of the Earth’s accreting material through time // Nature. 2017. V. 541. P. 521–524.
  22. Demidova S.I., Nazarov M.A., Lorenz C.A., Kurat G., Brandstätter F., Ntaflos Th. Chemical composition of lunar meteorites and the lunar crust // Petrology. 2007. V. 15. P. 386–407.
  23. Desch S.J., Robinson K.L. A unified model for hydrogen in the Earth and Moon: No one expects the Theia contribution // Geochemistry. 2019. V. 79. id. 125546.
  24. Dhingra D. The new Moon: Major advances in lunar science enabled by compositional remote sensing from recent missions // Geosciences. 2018. V. 8 (12). 498. https://doi.org/10.3390/geosciences8120498
  25. Elardo S.M., Draper D.S., Shearer C.K., Jr. Lunar magma ocean crystallization revisited: Bulk composition, early cumulate mineralogy, and the source regions of the highlands Mg-suite // Geochim. et Cosmochim. Acta. 2011. V. 75. P. 3024–3045.
  26. Elkins-Tanton L.T., Bercovici D. Contraction or expansion of the Moon’s crust during magma ocean freezing? // Phil. Trans. Roy. Soc. A. 2014. V. 372. 20130240. https://doi.org/10.1098/rsta.2013.0240
  27. Elkins-Tanton L.T., Burgess S., Yin Q.-Z. The lunar magma ocean: Reconciling the solidification process with lunar petrology and geochronology // Earth and Planet. Sci. Lett. 2011. V. 304. P. 326–336.
  28. Gagnepain-Beyneix J., Lognonné P., Chenet H., Lombardi D., Spohn T. A seismic model of the lunar mantle and constraints on temperature and mineralogy // Phys. Earth and Planet. Inter. 2006. V. 159. P. 140–166.
  29. Garcia R.F., Gagnepain-Beyneix J., Chevrot S., Lognonné P. Very preliminary reference Moon model // Phys. Earth and Planet. Inter. 2011. V. 188. P. 96–113.
  30. Garcia R.F., Khan A., Drilleau M., Margerin L., Kawamura T., Sun D., Wieczorek M.A., Rivoldini A., Nunn C., Weber R.C., Marusiak A.G., Lognonné P., Nakamura Y., Zhu P. Lunar seismology: An update on interior structure models // Space Sci. Rev. 2019. V. 215. id. 50. https://doi.org/10.1007/s11214-019-0613-y
  31. Hartmann W.K. The giant impact hypothesis: past, present (and future?) // Phil. Trans. Roy. Soc. A. 2014. V. 372. P. 20130249.
  32. Hauri E.H., Saal A.E., Rutherford M.J., Van Orman J.A. Water in the Moon’s interior: Truth and consequences // Earth and Planet. Sci. Lett. 2015. V. 409. P. 252–264.
  33. Hess P.C., Parmentier E.M. A model for the thermal and chemical evolution of the Moon’s interior: Implications for the onset of mare volcanism // Earth and Planet. Sci. Lett. 1995. V. 134. P. 501–514.
  34. Hirschmann M.M. Mantle solidus: Experimental constrain and the effects of peridotite composition // Geochem. Geophys. Geosystem. 2000. V. 1. 2000GC000070.
  35. Hood L.L., Jones J.H. Geophysical constraints on lunar bulk composition and structure: A reassessment // J. Geophys. Res. 1987. V. 92E. P. 396–410.
  36. Hosono N., Karato S., Makino J., Saitoh T.R. Terrestrial magma ocean origin of the Moon // Nature Geoscience. 2019. V. 12. P. 418–423. https://doi.org/10.1038/s41561-019-0354-2
  37. Hu X., Ma P., Yang Y., Zhu M-H., Jiang T., Lucey P.G., Sun L., Zhang H., Li C., Xu R., He Z., Lin H., Huang C., Sun Y. Mineral abundances inferred from in situ reflectance measurements of Chang’E-4 landing site in South Pole-Aitken basin // Geophys. Res. Lett. 2019. V. 46. P. 9439–9447.
  38. Hu S., He H., Ji J., Ji J., Lin Y., Hui H., Anand M., Tartèse R., Yan Y., Hao J., Li R., Gu L., Guo Q., He H., Ouyang Z. A dry lunar mantle reservoir for young mare basalts of Chang’E-5 // Nature. 2021. https://doi.org/10.1038/s41586-021-04107-9
  39. Ivanov M.A., Hiesinger H., van der Bogert C.H., Orgel C., Pasckert J.H., Head J.W. Geologic history of the northern portion of the South Pole-Aitken basin on the Moon // J. Geophys. Res.: Planets. 2018. V. 123. P. 2585–2612.
  40. Jarosewich E. Chemical analyses of meteorites: A compilation of stony and iron meteorite analyses // Meteoritics. 1990. V. 25. P. 323–337.
  41. Jing J.-J., Lin Y., Knibbe J.S., van Westrenen W. Garnet stability in the deep lunar mantle: Constraints on the physics and chemistry of the interior of the Moon // Earth and Planet. Sci. Lett. 2022. V. 584. id. 117491. https://doi.org/10.1016/j.epsl.2022.117491
  42. Johnson T.E., Morrissey L.J., Nemchin A.A., Gardiner N.J., Snape J.F. The phases of the Moon: modelling crystallisation of the lunar magma ocean through equilibrium thermodynamics // Earth and Planet. Sci. Lett. 2021. V. 556. id. 116721. https://doi.org/10.1016/j.epsl.2020.116721
  43. Jones J.H., Delano J.W. A three-component model for the bulk composition of the Moon // Geochim. et Cosmochim. Acta. 1989. V. 53. P. 513–527.
  44. Jones J.H., Palme H. Geochemical constraints on the origin of the Earth and Moon. Origin of the Earth and Moon / Eds: Canup R.M. Tucson: Univ. Arizona Press, 2000. P. 197–216.
  45. Kamata S., Matsuyama I., Nimmo F. Tidal resonance in icy satellites with subsurface oceans // J. Geophys. Res.: Planets. 2015. V. 120. P. 1528–1542.
  46. Karato S.-I. Geophysical constraints on the water content of the lunar mantle its implications for the origin of the Moon // Earth and Planet. Sci. Lett. 2013. V. 384. P. 144–153.
  47. Kawamura T., Lognonné P., Nishikawa Y., Tanaka S. Evaluation of deep moonquake source parameters: Implication for fault characteristics and thermal state // J. Geophys. Res.: Planets. 2017. V. 122. P. 1487–1504.
  48. Keihm S.J., Langseth M.G. Lunar thermal regime to 300 km // Proc. 8th Lunar Sci. Conf. 1977. P. 499–514.
  49. Kirk R.L., Stevenson D.J. The competition between thermal contraction and differentiation in the stress history of the Moon // J. Geophys. Res. 1989. V. 94. P. 12133–12144.
  50. Khan A., Connolly J.A.D., Olsen N., Mosegaard K. Constraining the composition and thermal state of the Moon from an inversion of electromagnetic lunar day-side transfer functions // Earth and Planet. Sci. Lett. 2006a. V. 248. P. 579–598.
  51. Khan A., Maclennan J., Taylor S.R., Connolly J.A.D. Are the Earth and the Moon compositionally alike? Inferences on lunar composition and implications for lunar origin and evolution from geophysical modeling // J. Geophys. Res.: Planets. 2006b. V. 111. E05005. https://doi.org/10.1029/2005JE002608
  52. Khan A., Connolly J.A.D., Maclennan J., Mosegaard K.Joint inversion of seismic and gravity data for lunar composition and thermal state // Geophys. J. 2007. V. 168. P. 243–258. https://doi.org/10.1111/j.1365-246X.2006.03200.x
  53. Kronrod E., Matsumoto K., Kuskov O.L., Kronrod V., Yamada R., Kamata S. Towards geochemical alternatives to geophysical models of the internal structure of the lunar mantle and core // Adv. Space Sci. 2022. V. 69. P. 2798–2824. https://doi.org/10.1016/j.asr.2022.01.012
  54. Kuskov O.L. Constitution of the Moon: 4. Composition of the mantle from seismic data // Phys. Earth and Planet. Inter. 1997. V. 102. P. 239–257. https://doi.org/10.1016/S0031-9201(96)03259-1
  55. Kuskov O.L., Kronrod V.A. Constitution of the Moon: 5. Constraints on composition, density, temperature, and radius of a core // Phys. Earth and Planet. Inter. 1998. V. 107. P. 285–306.
  56. Kuskov O.L., Fabrichnaya O.B., Galimzyanov R.F., Truskinovsky L.M. Computer simulation of the phase diagram for the MgO–SiO2 system at P–T parameters of the mantle transition zone // Phys. Chem. Minerals. 1989. V. 16. P. 442–454.
  57. Kuskov O.L., Kronrod V.A., Kronrod E.V. Thermo-chemical constraints on the interior structure and composition of the lunar mantle // Phys. Earth and Planet. Inter. 2014. V. 235. P. 84–95. https://doi.org/10.1016/j.pepi.2014.07.011
  58. Kuskov O.L., Kronrod V.A., Kronrod E.V. Thermo-chemical constraints on the lunar bulk composition and the structure of a three-layer mantle // Phys. Earth and Planet. Inter. 2019. V. 286. P. 1–12. https://doi.org/10.1016/j.pepi.2018.10.011
  59. Laneuville M., Wieczorek M.A., Breuer D., Tosi N. Asymmetric thermal evolution of the Moon // J. Geophys. Res.: Planets. 2013. V. 118. P. 1435–1452. https://doi.org/10.1002/jgre.20103
  60. Lemelin M., Lucey P.G., Miljkovic K., Gaddis L.R., Hare T., Ohtake M. The compositions of the lunar crust and uppermantle: Spectral analysis of the inner rings of lunar impact basins // Planet. and Space Sci. 2019. V. 165. P. 230–243. https://doi.org/10.1016/j.pss.2018.10.003
  61. Li C., Liu D., Liu B., Ren X., Liu J., He Z., Zuo W., Zeng X., Xu R., Tan X., Zhang X., Chen W., Shu R., Wen W., Su Y., Zhang H., Ouyang Z. Chang’E-4 initial spectroscopic identification of lunar far-side mantle-derived materials // Nature. 2019. V. 569. P. 378–382. https://doi.org/10.1038/s41586-019-1189-0
  62. Lognonné P. Planetary seismology // Annu. Rev. Earth and Planet. 2005. V. 33. P. 571–604.
  63. Lognonné P., Gagnepain-Beyneix J., Chenet H. A new seismic model of the Moon: Implications for structure, thermal evolution and formation of the Moon // Earth and Planet. Sci. Lett. 2003. V. 211. P. 27–44.
  64. Longhi J. Petrogenesis of picritic mare magmas: Constraints on the extent of early lunar differentiation // Geochim. et Cosmochim. Acta. 2006. V. 70. P. 5919–5934.
  65. Macke R.J., Britt D.T., Consolmagno G.J. Density, porosity, and magnetic susceptibility of achondritic meteorites // Meteorit. and Planet. Sci. 2011. V. 46. P. 311–326.
  66. Matsumoto K., Yamada R., Kikuchi F., Kamata S., Ishihara Y., Iwata T., Hanada H., Sasaki S. Internal structure of the Moon inferred from Apollo seismic data and selenodetic data from GRAIL and LLR // Geophys. Res. Lett. 2015. V. 42. № 18. P. 7351–7358. https://doi.org/10.1002/2015GL065335
  67. Maurice M., Tosi N., Schwinger S., Breuer D., Kleine T. A long-lived magma ocean on a young Moon // Sci. Adv. 2020. V. 6 (28). id. eaba8949.
  68. McDonough W.F., Sun S.-S. The composition of the Earth // Chem. Geol. 1995. V. 120. P. 223–253.
  69. Melosh H.J., Kendall J., Johnson B.C., Bowling T., Horgan B., Lucey P.G., Taylor G.J. The Moon’s upper mantle: mostly opx, not olivine? // 45th Lunar and Planet. Sci. Conf. 2014. P. 2505.
  70. Morgan J.W., Hertogen J., Anders E. The Moon: composition determined by nebula processes // Moon and Planets. 1978. V. 18. P. 465–478.
  71. Moriarty D.P., Dygert N., Valencia S.N., Watkins R.N., Petro N.E. The search for lunar mantle rocks exposed on the surface of the Moon // Nature Commun. 2021a. V. 12. P. 1–11. https://doi.org/10.1038/s41467-021-24626-3
  72. Moriarty D.P., Watkins R.N., Valencia S.N. Evidence for a stratified upper mantle preserved within the South Pole–Aitken Basin // J. Geophys. Res: Planets. 2021b. V. 121. id. e2020JE006589.
  73. Mueller S., Taylor G.J., Phillips R.J. Lunar composition: A geophysical and petrological synthesis // J. Geophys. Res. 1988. V. 93. P. 6338–6352.
  74. Nakamura Y. Seismic velocity structure of the lunar mantle // J. Geophys. Res. 1983. V. 88. P. 677–686.
  75. Nazarov M.A., Aranovich L.Y., Demidova S.I., Ntaflos T., Brandstätter F. Aluminous enstatites of lunar meteorites and deep-seated lunar rocks // Petrology. 2011. V. 19. P. 1–13.
  76. Neumann G.A., Zuber M.T., Smith. D.E., Lemoine F.G. The lunar crust: global structure and signature of major basins // J. Geophys. Res. 1996. V. 101. P. 16841–16863.
  77. Nielsen S.G., Bekaert D.V., Auro M. Isotopic evidence for the formation of the Moon in a canonical giant impact // Nature Commun. 2021. V. 12. id. 1817. https://doi.org/10.1038/s41467-021-22155-7
  78. Nunn C., Garcia R.F., Nakamura Y., Marusiak A.G., Kawamura T., Sun D., Margerin L., Weber R., Drilleau M., Wieczorek M.A., Khan A., Rivoldini A., Lognonne P., Zhu P. Lunar seismology: A data and instrumentation review // Space Sci. Rev. 2020. V. 216. id. 89. https://doi.org/10.1007/s11214-020-00709-3
  79. Pahlevan K. Telltale tungsten and the Moon // Nat. Geosci. 2018. V. 11. P. 16–18.
  80. Prissel T.C., Gross J. On the petrogenesis of lunar troctolites: New insights into cumulate mantle overturn and mantle exposures in impact basins // Earth and Planet. Sci. Lett. 2020. V. 551. id. 116531. https://doi.org/10.1016/j.epsl.2020.116531
  81. Reufer A., Meier M.M.M., Bentz W., Wieler R. A hit-and-run giant impact scenario // Icarus. 2012. V. 221. P. 296–299.
  82. Ringwood A.E. Basaltic magmatism and the bulk composition of the Moon. I. Major and heat-producing elements // The Moon. 1977. V. 16. P. 389–423. https://doi.org/10.1007/BF00577901
  83. Ringwood A.E., Essene E. Petrogenesis of Apollo 11 basalts, internal constitution and origin of the Moon // Proc. Apollo 11 Lunar Sci. Conf. 1970. V. 1. P. 769–799.
  84. Rufu R., Aharonson O., Perets H.B. A multiple-impact origin for the Moon // Nature Geosci. 2017. https://doi.org/10.1038/NGEO2866
  85. Sakai R., Nagahara H., Ozawa K., Tachibana S. Composition of the lunar magma ocean constrained by the conditions for the crust formation // Icarus. 2014. V. 229. P. 45–56.
  86. Schmidt M.W., Kraettli G. Experimental crystallization of the lunar magma ocean, initial selenotherm and density stratification, and implications for crust formation, overturn and the bulk silicate Moon composition // J. Geophys. Res.: Planets. 2022. V. 127. id. e2022JE007187.
  87. Schwinger S., Breuer D. Employing magma ocean crystallization models to constrain structure and composition of the lunar interior // Phys. Earth and Planet. Inter. 2022. V. 322. id. 106831. https://doi.org/10.1016/j.pepi.2021.106831
  88. Shearer C.K., Hess P.C., Wieczorek M.A., Pritchard M.E., Parmentier E.M., Borg L.E., Longhi J., Elkins-Tanton L.T., Neal C.R., Antonenko I., Canup R.M., Halliday A.N., Grove T.L., Hager B.H., Lee D.C., Wiechert U. Thermal and magmatic evolution of the Moon // Rev. Mineral. Geochem. 2006. V. 60. P. 365–518.
  89. Snyder G.A., Taylor L.A., Neal C.R. A chemical model for generating the source of mare basalts: Combined equilibrium and fractional crystallization of the lunar magmasphere // Geochim. et Cosmochim. Acta. 1992. V. 56. P. 3809–3823.
  90. Solomon S.C. On the early thermal state of the Moon / Origin of the Moon / Eds Hartmann W.K., Phillips R.J., Taylor G.J. Houston, TX: LPI, 1986. P. 435–452.
  91. Steenstra E.S., Berndt J., Klemme S., Fei Y., van Westrenen W. A possible high-temperature origin of the Moon and its geochemical consequences // Earth and Planet. Sci. Lett. 2020. V. 538. id. 116222.
  92. Svetsov V.V., Pechernikova G.V., Vityazev A.V. A model of Moon formation from ejecta of macroimpacts on the Earth // 43rd Lunar and Planet. Sci. Conf. 2012. id. 1808.
  93. Taylor S.R. Planetary Science: A Lunar Perspective. Houston: Lunar Planet. Inst., 1982. 481 p.
  94. Taylor S.R., Taylor G.J., Taylor L.A. The Moon: A Taylor perspective // Geochim. et Cosmochim. Acta. 2006. V. 70. P. 594–598.
  95. Taylor G.J., Wieczorek M.A. Lunar bulk chemical composition: a post-Gravity Recovery and Interior Laboratory reassessment // Phil. Trans. Roy. Soc. A. 2014. V. 372. P. 20130242.
  96. Toplis M.J., Mizzon H., Monnereau M. et al. Chondritic models of 4-Vesta: Implications for geochemical and geophysical properties // Meteorit. and Planet. Sci. 2013. V. 48. P. 2300–2315. https://doi.org/10.1111/maps.12195
  97. Wade J., Wood B.J. The oxidation state and mass of the Moon-forming impactor // Earth and Planet. Sci. Lett. 2016. V. 442. P. 186–193.
  98. Warren P.H. ‘‘New’’ lunar meteorites: implications for composition of the global lunar surface, lunar crust, and the bulk Moon // Meteorit. and Planet. Sci. 2005. V. 40. P. 477–506.
  99. Warren P.H., Rasmussen K.L. Megaregolith insulation, internal temperatures and bulk uranium content of the Moon // J. Geophys. Res. 1987. V. 92. P. 3453–3465.
  100. Watters T.R., Robinson M.S., Banks M.E., Tran T., Denevi B.W. Recent extensional tectonics on the Moon revealed by the Lunar Reconnaissance Orbiter Camera // Nat. Geosci. 2012. V. 5. P. 181–185. https://doi.org/10.1038/NGEO1387
  101. Weber R.C., Lin P., Garnero E.J., Williams Q., Lognonné P. Seismic detection of the lunar core // Science. 2011. V. 331. P. 309–312. https://doi.org/10.1126/science.1199375
  102. Wieczorek M.A., Jolliff B.J., Khan A., Pritchard M.E., Weiss B.J., Williams J.G., Hood L.L., Righter K., Neal C.R., Shearer C.K., McCallum I.S., Tompkins S., Hawke B.R., Peterson C., Gillis J.J., Bussey B. et al. The constitution and structure of the lunar interior // Rev. Mineral. Geochem. 2006. V. 60. P. 221–364.
  103. Wieczorek M.A., Neumann G.A., Nimmo F. Kiefer W.S., Taylor G.J., Melosh H.J., Phillips R.J., Solomon S.C., Andrews-Hanna J.C., Asmar S.W., Konopliv A.S., Lemoine F.G., Smith D.E., Watkins M.M., Williams J.G., Zuber M.T. The crust of the Moon as seen by GRAIL // Science. 2013. V. 339. P. 671–675. https://doi.org/10.1126/science.1231530
  104. Williams J.G., Boggs D.H. Tides on the Moon: theory and determination of dissipation // J. Geophys. Res.: Planets. 2015. V. 120. P. 689–724. https://doi.org/10.1002/2014JE004755
  105. Williams J.G., Boggs D.H., Yoder C.F., Ratcliff J.T., Dickey J.O. Lunar rotational dissipation in solid body and molten core // J. Geophys. Res. 2001. V. 106. P. 27933–27968. https://doi.org/10.1029/2000JE001396
  106. Williams J.G., Konopliv A.S., Boggs D.H., Park R.S., Yuan D-N., Lemoine F.G., Goossens S., Mazarico E., Nimmo F., Weber R.C., Asmar S.W., Melosh H.J., Neumann G.A., Phillips R.J., Smith D.E., Solomon S.C., Watkins M.M., Wieczorek M.A., Andrews-Hanna J.C., Head J.W., Kiefer W.S., Matsuyama I., McGovern P.J., Taylor G.J., Zuber M.T. Lunar interior properties from the GRAIL mission // J. Geophys. Res.: Planets. 2014. V. 119. P. 1546–1578. https://doi.org/10.1002/2013JE004559
  107. Wittmann A., Korotev R.L., Jolliff B.L., Carpenter P.K. Spinel assemblages in lunar meteorites Graves Nunataks 06157 and Dhofar 1528: Implications for impact melting and equilibration in the Moon’s upper mantle // Meteorit. and Planet. Sci. 2018. V. 54. P. 379–394. https://doi.org/10.1111/maps.13217
  108. Wu W., Xu Y.-G., Zhang Z.-F., Li X. Calcium isotopic composition of the lunar crust, mantle, and bulk silicate Moon: A preliminary study // Geochim. et Cosmochim. Acta. 2020. V. 270. P. 313–324. https://doi.org/10.1016/j.gca.2019.12.001
  109. Yang Z., Wang G., Xu Y., Zeng Y., Zhang Z. A review of the lunar 182Hf-182W isotope system research // Minerals. 2022. V. 12. P. 759. https://doi.org/10.3390/min12060759
  110. Yoshizaki T., McDonough W.F. The composition of Mars // Geochim. et Cosmochim. Acta. 2020. V. 273. P. 137–162. https://doi.org/10.1016/j.gca.2020.01.011

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (93KB)
3.

Download (398KB)
4.

Download (587KB)
5.

Download (474KB)
6.

Download (605KB)
7.

Download (581KB)

Copyright (c) 2023 О.Л. Кусков, Е.В. Кронрод, В.А. Кронрод

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies