Motion of Planetesimals in the Hill Sphere of the Star Proxima Centauri

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The motion of planetesimals initially located in the feeding zone of the planet Proxima Centauri c, at distances of 500 AU from the star to the star’s Hill sphere radius of 1200 AU was considered. In the analyzed non-gaseous model, the primary ejection of planetesimals from most of the feeding zone of an almost formed planet c to distances greater than 500 AU from the star occurred during the first 10 million years. Only for planetesimals originally located at the edges of the planet’s feeding zone, the fraction of planetesimals that first reached 500 AU over the time greater than 10 million years was more than half. Some planetesimals could reach the outer part of the star’s Hill sphere over hundreds of millions of years. Approximately 90% of the planetesimals that first reached 500 AU from Proxima Centauri first reached 1200 AU from the star in less than 1 million years, given the current mass of the planet c. No more than 2% of planetesimals with aphelion orbital distances between 500 and 1200 AU followed such orbits for more than 10 million years (but less than a few tens of millions of years). With a planet mass equal to half the mass of the planet c, approximately 70–80% of planetesimals increased their maximum distances from the star from 500 to 1200 AU in less than 1 million years. For planetesimals that first reached 500 AU from the star under the current mass of the planet c, the fraction of planetesimals with orbital eccentricities greater than 1 was 0.05 and 0.1 for the initial eccentricities of their orbits eo = 0.02 and eo = 0.15, respectively. Among the planetesimals that first reached 1200 AU from the star, this fraction was approximately 0.3 for both eo values. The minimum eccentricity values for planetesimals that have reached 500 and 1200 AU from the star were 0.992 and 0.995, respectively. In the considered model, the disk of planetesimals in the outer part of the star’s Hill sphere was rather flat. Inclinations i of the orbits for more than 80% of the planetesimals that first reached 500 or 1200 AU from the star did not exceed 10°. With the current mass of the planet c, the percentage of such planetesimals with i > 20° did not exceed 1% in all calculation variants. The results may be of interest for understanding the motion of bodies in other exoplanetary systems, especially those with a single dominant planet. They can be used to provide the initial data for models of the evolution of the disk of bodies in the outer part of Proxima Centauri’s Hill sphere, which take into account gravitational interactions and collisions between bodies, as well as the influence of other stars. The strongly inclined orbits of bodies in the outer part of Proxima Centauri’s Hill sphere can primarily result from bodies that entered the Hill sphere from outside. The radius of Proxima Centauri’s Hill sphere is an order of magnitude smaller than the radius of the outer boundary of the Hills cloud in the Solar System and two orders of magnitude smaller than the radius of the Sun’s Hill sphere. Therefore, it is difficult to expect the existence of a similarly massive cloud around this star as the Oort cloud around the Sun.

About the authors

S. I. Ipatov

Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, Moscow, Russia

Author for correspondence.
Email: siipatov@hotmail.com
Россия, Москва

References

  1. Емельяненко В.В. Новые проблемы динамики и происхождения комет после космичесской миссии “Rosetta” // Астрон. вестн. 2018. Т. 52. С. 391–401. (Emel’yanenko V.V. Dynamics and origin of comets: new problems appeared after the Rosetta space mission // Sol. Syst. Res. 2018. V. 52. P. 382–391.) https://doi.org/10.1134/S0038094618050039.
  2. Ипатов С.И. Миграция планетезималей на последних стадиях аккумуляции планет-гигантов // Астрон. вестн. 1989a. Т. 23. № 1. С. 27–38. (Ipatov S.I. Planetesimal migration during the last stages of accumulation of the giant planets // Sol. Syst. Res. 1989a. V. 23. № 1. P. 16–23.).
  3. Ипатов С.И. Эволюция эксцентриситетов орбит планетезималей при формировании планет-гигантов // Астрон. вестн. 1989б. Т. 23. № 3. С. 197–206. (Ipatov S.I. Evolution of the orbital eccentricities of planetesimals during formation of the giant planets // Sol. Syst. Res. 1989b. V. 23. № 3. P. 119–125.)
  4. Ипатов С.И. Эволюция орбит растущих зародышей планет-гигантов, первоначально двигавшихся по сильно эксцентричным орбитам // Письма в Астрон. журн. 1991. Т. 17. № 3. С. 269–281.
  5. Ипатов С.И. Миграция тел в процессе аккумуляции планет // Астрон. вестн. 1993. Т. 27. № 1. С. 83–101. (Ipatov S.I. Migration of bodies in the accretion of planets // Sol. Syst. Res. 1993. V. 27. № 1. P. 65–79. https://www.academia.edu/44448077/Migration_of_bodies_in_the_accretion_of_planets).
  6. Ипатов С.И. Миграция небесных тел в Солнечной системе. Изд-во УРСС, 2000. 320 с. (также Изд. стереотип. URSS. 2021. 320 с.) https://doi.org/10.17513/np.451. https://elibrary.ru/item.asp?id=46237738.
  7. Ипатов С.И. Устойчивые орбиты в зоне питания планеты Проксима Центавра с // Астрон. вестн. 2023. Т. 57. № 3. С. 248–261. https://doi.org/10.31857/S0320930X23030039 (Ipatov S.I. Stable orbits in the feeding zone of planet Proxima Centauri c // Sol. Syst. Res. 2023. V. 57. № 3. P. 236–248.)
  8. Маров М.Я., Ипатов С.И. Процессы миграции в Солнечной системе и их роль в эволюции Земли и планет // Успехи физ. наук. 2023. Т. 193. № 1. С. 2–32. https://doi.org/10.3367/UFNr.2021.08.039044
  9. Маров М.Я., Шевченко И.И. Экзопланеты: природа и модели // Успехи физ. наук. 2020. Т. 190. № 9. С. 897–932. https://doi.org/10.3367/UFNr.2019.10.038673.
  10. Маров М.Я. Шевченко И.И. Экзопланеты. Физика, Динамика, Космогония. М.: Физматлит, 2022. 192 с.
  11. Сафронов В.С. Эволюция допланетного облака и образование Земли и планет. М.: Наука, 1969. 244 с.
  12. Чеботарев Г.А. Динамические пределы Солнечной системы // Астрон. журн. 1964. Т. 41. № 5. С. 983–989.
  13. Brasser R., Morbidelli, A. Oort cloud and Scattered Disc formation during a late dynamical instability in the Solar System // Icarus. 2013. V. 225. P. 40–49.
  14. Brasser R., Duncan M.J., Levison H.F. Embedded star clusters and the formation of the Oort cloud // Icarus. 2006. V. 184. P. 59–82.
  15. Brasser R., Higuchi A., Kaib N. Oort cloud formation at various galactic distances // Astron. and Astrophys. 2010. V. 516. id. 72 (12 p.).
  16. Clement M.S., Kaib N.A., Raymond S.N., Walsh K.J. Mars’ growth stunted by an early giant planet instability // Icarus. 2018. V. 311. P. 340–356.
  17. Clement M.S., Kaib N.A., Raymond S.N., Chambers J.E., Walsh K.J. The early instability scenario: Terrestrial planet formation during the giant planet instability, and the effect of collisional fragmentation // Icarus. 2019. V. 321. P. 778–790.
  18. Dones L., Weissman P.R., Levison H.F., Duncan M.J. Oort Cloud formation and dynamics // Comets II / Eds: Featou M.C., Keller K.U., Weaver H.A. Tucson, AZ: Univ. Arizona Press, 2004. P. 153–174.
  19. Dones L., Brasser R., Kaib N., Rickman H. Origin and evolution of the cometary reservoirs // Space Sci. Rev. 2015. V. 197. P. 191–269.
  20. Duncan M., Quinn T., Tremaine S. The formation and extent of the Solar System comet cloud // Astron. J. 1987. V. 94. P. 1330–1338.
  21. Dybczynski P.A., Leto G., Jakubík M., Paulech T., Neslušan L. The simulation of the outer Oort cloud formation. The first giga-year of the evolution // Astron. and Astrophys. 2008. V. 487. P. 345–355.
  22. Emel’yanenko V.V., Asher D.J., Bailey M.E. Centaurs from the Oort cloud and the origin of Jupiter-family comets // Mon. Notic. Roy. Astron. Soc. 2005. V. 361. P. 1345–1351.
  23. Emel’yanenko V.V., Asher D.J., Bailey M.E. The fundamental role of the Oort cloud in determining the flux of comets through the planetary system // Mon. Notic. Roy. Astron. Soc. 2007. V. 381. P. 779–789. https://doi.org/10.1111/j.1365-2966.2007.12269.x
  24. Emel’yanenko V.V., Asher D.J., Bailey M.E. A model for the common origin of Jupiter family and Halley type comets // Earth, Moon, and Planets. 2013. V. 110. P. 105–130. https://doi.org/10.1007/s11038-012-9413-z
  25. Fernandez J.A., Brunini A. The buildup of a tightly bound comet cloud around an early Sun immersed in a dense Galactic environment: Numerical experiments // Icarus. 2000. V. 145. P. 580–590.
  26. Fouchard M., Emel’yanenko V., Higuchi A. Long-period comets as a tracer of the Oort cloud structure // Celest. Mech. and Dyn. Astron. 2020. V. 132. id 43 (22 p.)
  27. Frantseva K., Nesvorný D., Mueller M., van der Tak F.F.S., ten Kate I.L., Pokorný P. Exogenous delivery of water to Mercury // Icarus. 2022. V. 383. id. 114980 (11 p.).
  28. Gomes R., Levison H.F., Tsiganis K., Morbidelli A. Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets // Nature. 2005. V. 435. № 7041. P. 466–469.
  29. Hills J.G. Comet showers and the steady-state infall of comets from the Oort cloud // Astron. J. 1981. V. 86. P. 1730–1740.
  30. Ipatov S.I. Accumulation and migration of the bodies from the zones of giant planets // Earth, Moon, and Planets. 1987. V. 39. № 2. P. 101–128. http://articles.adsabs.harvard.edu/full/ 1987EM%26P…39..101I.
  31. Ipatov S.I. Possible migration of the giant planets embryos // 22nd Lunar and Planet. Sci. Conf. 1991. P. 607–608. https://articles.adsabs.harvard.edu/pdf/ 1991LPI….22..607I.
  32. Ipatov S.I. Migration of planetesimals from beyond Mars’ orbit to the Earth // 14th Europlanet Sci. Congress 2020. EPSC2020-71. https://doi.org/10.5194/epsc2020-71
  33. Ipatov S.I. Delivery of water and volatiles to planets in the habitable zone in the Proxima Centauri system // Abstracts of the AASTCS Habitable Worlds 2021 Workshop (22–26 February 2021, a virtual conference). Open Engagement Abstracts, Bull. Am. Astron. Soc. 2021. V. 53. № 3. e-id 2021n3i1126 (5 p.) https://baas.aas.org/pub/2021n3i1126/release/2.
  34. Ipatov S.I. Scattering of planetesimals from the feeding zone of Proxima Centauri c // Thirteenth Moscow Solar System Symp. (13M-S3) (October 10-14, 2022, Moscow, the Space Research Institute). https://doi.org/10.21046/13MS3-2022. 2022
  35. Ipatov S.I. Delivery of icy planetesimals to inner planets in the Proxima Centauri planetary system // Meteoritics and Planet. Sci. 2023. V. 58. P. 752–774. https://doi.org/10.1111/maps.13985
  36. Lambrechts M., Johansen A. Rapid growth of gas-giant cores by pebble accretion // Astron. and Astrophys. 2012. V. 544. id. A32 (13 p.). https://doi.org/10.1051/0004-6361/201219127
  37. Lambrechts M., Johansen A. Forming the cores of giant planets from the radial pebble flux in protoplanetary discs // Astron. and Astrophys. 2014. V. 572. id. A107 (12 p.). https://doi.org/10.1051/0004-6361/201424343.
  38. Levison H.F., Duncan M.J. The long-term dynamical behavior of short-period comets // Icarus. 1994. V. 108. P. 18–36.
  39. Levison H.F., Duncan M.J., Brasser R., Kaufmann D.F. Capture of the Sun’s Oort cloud from stars in its birth cluster // Science. 2010. V. 329. P. 187–190.
  40. Levison H.F., Morbidelli A., Tsiganis K., Nesvorný D., Gomes R. Late orbital instabilities in the outer planets induced by interaction with a self-gravitating planetesimal disk // Astron. J. 2011. V. 142. id 152.
  41. Morbidelli A. Origin and dynamical evolution of comets and their reservoirs // arXiv:astro-ph/0512256. 2005. 86 p.
  42. Morbidelli A. Planet formation by pebble accretion in ringed disks // Astron. and Astrophys. 2020. V. 638. id. A1 (7 p.). https://doi.org/10.1051/0004-6361/202037983
  43. Morbidelli A., Levison H.F., Tsiganis K., Gomes R. Chaotic capture of Jupiter’s Trojan asteroids in the early Solar System // Nature. 2005. V. 435. № 7041. P. 462–465.
  44. Morbidelli A., Brasser R., Gomes R., Levison H.F., Tsiganis K. Evidence from the asteroid belt for a violent past evolution of Jupiter’s orbit // Astron. J. 2010. V. 140. P. 1391–1401.
  45. Morbidelli A., Lambrechts M., Jacobson S., Bitsch B. The great dichotomy of the Solar System: Small terrestrial embryos and massive giant planet cores // Icarus. 2015. V. 258. P. 418–429. https://doi.org/10.1016/j.icarus.2015.06.003
  46. Siraj A., Loeb A. Interstellar objects outnumber Solar System objects in the Oort cloud // Mon. Notic. Roy. Astron. Soc. 2021. V. 507. P. L16–L18.
  47. Schwarz R., Bazso A., Georgakarakos N., Loibnegger B., Maindl T.I., Bancelin D., Pilat-Lohinger E., Kislyakova K.G., Dvorak R., Dobbs-Dixon I. Exocomets in the Proxima Centauri system and their importance for water transport // Mon. Notic. Roy. Astron. Soc. 2018. V. 480. P. 3595–3608. https://doi.org/10.1093/mnras/sty2064
  48. Souami D., Cresson J., Biernacki C., Pierret F. On the local and global properties of the gravitational spheres of influence // Mon. Notic. Roy. Astron. Soc. 2020. V. 496. P. 4287–4297.
  49. Tsiganis K., Gomes R., Morbidelli A., Levison H.F. Origin of the orbital architecture of the giant planets of the Solar System // Nature. 2005. V. 435. № 7041. P. 459–461.
  50. Wahlberg Jansson K., Johansen A. Formation of pebble-pile planetesimals // Astron. and Astrophys. 2014. V. 570. id A47 (11 p.)

Copyright (c) 2023 С.И. Ипатов

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies