Thermal Sounding of the Martian Atmosphere Using the ACS TIRVIM FT-IR Spectrometer on Board ExoMars TGO: Method for Solving the Inverse Problem

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This paper presents a method for solving the inverse problem of thermal sounding using calibrated data from the ACS TIRVIM experiment on board the ExoMars Trace Gas Orbiter. The 1.7–17 µm range TIRVIM Fourier spectrometer as part of the ACS instrument complex aboard the ExoMars TGO operates in the nadir and solar occultation modes in orbit around Mars. The main scientific goal of TIRVIM in the nadir observation mode is the long-term constant monitoring of the thermal structure of the Martian atmosphere and the general content of aerosols and water vapor from measurements in the range of 5–16.7 µm (600–2000 cm–1). To process the TIRVIM nadir measurements, an algorithm was developed, allowing the retrieval of the vertical temperature profile from the surface to 60 km, the surface temperature, and the general content of dust and water ice in the atmosphere from the TIRVIM spectrum in the range of 600–1250 cm–1, as well as the water vapor column abundance according to measurements in the range of 1250–1830 cm–1. The processing method widely uses the achievements of previous similar experiments, taking into account the features of the TIRVIM spectra. Using the developed method 2.28 × 106 spectra obtained by TIRVIM in nadir by regular measurements, were processed with retrieval of the thermal structure up to 60 km altitude and the aerosol content in the atmosphere as well as additional 2.3 × 105 specially averaged TIRVIM spectra, were processed with retrieval of the water vapor column abundancein the Martian atmosphere.

About the authors

P. V. Vlasov

Space Research Institute of the Russian Academy of Sciences (IKI RAS), Moscow, Russia

Email: pavel.vlasov@phystech.edu
Россия, Москва

N. I. Ignatiev

Space Research Institute of the Russian Academy of Sciences (IKI RAS), Moscow, Russia

Email: pavel.vlasov@phystech.edu
Россия, Москва

O. I. Korablev

Space Research Institute of the Russian Academy of Sciences (IKI RAS), Moscow, Russia

Email: pavel.vlasov@phystech.edu
Россия, Москва

A. A. Fedorova

Space Research Institute of the Russian Academy of Sciences (IKI RAS), Moscow, Russia

Email: pavel.vlasov@phystech.edu
Россия, Москва

A. V. Grigoriev

Australian National University, Canberra, Australia

Email: pavel.vlasov@phystech.edu
Австралия, Канберра

D. V. Patsaev

Space Research Institute of the Russian Academy of Sciences (IKI RAS), Moscow, Russia

Email: pavel.vlasov@phystech.edu
Россия, Москва

I. A. Maslov

Space Research Institute of the Russian Academy of Sciences (IKI RAS), Moscow, Russia

Email: pavel.vlasov@phystech.edu
Россия, Москва

A. V. Shakun

Space Research Institute of the Russian Academy of Sciences (IKI RAS), Moscow, Russia

Email: pavel.vlasov@phystech.edu
Россия, Москва

S. Guerlet

LMD/IPSL, Paris, France

Email: pavel.vlasov@phystech.edu
Франция, Париж

D. Grassi

INAF-IAPS, Rome, Italy

Email: pavel.vlasov@phystech.edu
Италия, Рим

L. V. Zasova

Space Research Institute of the Russian Academy of Sciences (IKI RAS), Moscow, Russia

Author for correspondence.
Email: pavel.vlasov@phystech.edu
Россия, Москва

References

  1. Мороз В.И., Делер В., Устинов Е.А., Шефер К., Засова Л.В., Шпенкух Д., Дьячков А.В., Дюбуа Р., Линкин В.М., Эртель Д., и 7 соавторов. Инфракрасный эксперимент на AMC “Bенера-15” и “Bенера-16”. Предварительные результаты анализа спектров в области полос поглощения H2O и SO2 // Космич. исслед. 1985. Т. 23. № 2. С. 236–247.
  2. Москаленко Н.И., Паржин С.Н. Исследование спектров поглощения углекислого газа при повышенных давлениях // Всесоюз. симп. по распространению лазерного излучения в атмосфере. Томск: ИОА СО АН СССР, 1981. С. 110–113.
  3. Тимофеев Ю.М., Васильев А.В.Теоретические основы атмосферной оптики. СПб.: Наука, 2003. 474 с.
  4. Brown L R. CO2-broadened water in the pure rotation and ν2 fundamental regions // J. Molec. Spectrosc. 2007. V. 246. № 1. P. 1–21. https://doi.org/10.1016/j.jms.2007.07.010
  5. Clancy R.T., Wolff M.J., Christensen P.R. Mars aerosol studies with the MGS TES emission phase function observations: Optical depths, particle sizes, and ice cloud types versus latitude and solar longitude // J. Geophys. Res.: Planets. 2003. V. 108. № E9. id. 5098. https://doi.org/10.1029/2003JE002058
  6. Conrath B.J., Pearl J.C., Smith M.D., Maguire W.C., Christensen P.R., Dason S., Kaelberer M.S. Mars Global Surveyor Thermal Emission Spectrometer (TES) observations: Atmospheric temperatures during aerobraking and science phasing // J. Geophys. Res.: Planets. 2000. V. 105. № E4. P. 9509–9519. https://doi.org/10.1029/1999JE001095
  7. Fan S., Guerlet S., Forget F., Bierjon A., Millour E., Ignatiev N., Shakun A., Grigoriev A., Trokhimovskiy A., Montmessin F., Korablev O. Thermal tides in the Martian atmosphere near northern summer solstice observed by ACS/TIRVIM on board TGO // Geophys. Res. Lett. 2022. V. 49. № 7. id. e2021GL097130. https://doi.org/10.1029/2021GL097130
  8. Forget F., Hourdin F., Fournier R., Hourdin C., Talagrand O., Collins M., Lewis S.R., Read P.L., Huot J.-P. Improved general circulation models of the Martian atmosphere from the surface to above 80 km // J. Geophys. Res.: Planets. 1999. V. 104. № E10. P. 24155–24175. https://doi.org/10.1029/1999JE001025
  9. Gamache R.R., Farese M., Renaud C.L. A spectral line list for water isotopologues in the 1100–4100 cm−1 region for application to CO2-rich planetary atmospheres // J. Molec. Spectrosc. 2016. V. 326. P. 144–150. https://doi.org/10.1016/j.jms.2015.09.001
  10. Gamache R.R., Roller C., Lopes E., Gordon I.E., Rothman L.S., Polyansky O.L., Zobov N.F., Kyuberis A.A., Tennyson J., Yurchenko S.N., and 9 co-authors. Total internal partition sums for 166 isotopologues of 51 molecules important in planetary atmospheres: Application to HITRAN2016 and beyond // J. Quant. Spectrosc. and Radiat. Transfer. 2017. V. 203. P. 70–87. https://doi.org/10.1016/j.jqsrt.2017.03.045
  11. Giuranna M., Wolkenberg P., Grassi D., Aronica A., Aoki S., Scaccabarozzi D., Saggin B., Formisano V. The current weather and climate of Mars: 12 years of atmospheric monitoring by the Planetary Fourier Spectrometer on Mars Express // Icarus. 2021. V. 353. id. 113406. https://doi.org/10.1016/j.icarus.2019.113406
  12. Gordon I.E., Rothman L.S., Hargreaves R.J., Hashemi R., Karlovets E., Skinner F., Conway E.K., Hill C., Kochanov R.V., Tan Y., and 78 co-authors. The HITRAN2020 molecular spectroscopic database // J. Quant. Spectrosc. and Radiat. Transfer. 2022. V. 277. id. 107949. https://doi.org/10.1016/j.jqsrt.2021.107949
  13. Grassi D., Ignatiev N.I., Zasova L.V., Maturilli A., Formisano V., Bianchini G.A., Giuranna M. Methods for the analysis of data from the Planetary Fourier Spectrometer on the Mars Express mission // Planet. and Space Sci. 2005. V. 53. № 10. P. 1017–1034. https://doi.org/10.1016/j.pss.2005.01.006
  14. Guerlet S., Ignatiev N., Forget F., Fouchet T., Vlasov P., Bergeron G., Young R.M.B., Millour E., Fan S., Tran H., and 5 co-authors. Thermal structure and aerosols in Mars’ atmosphere from TIRVIM/ACS onboard the ExoMars Trace Gas Orbiter: Validation of the retrieval algorithm // J. Geophys. Res.: Planets. 2022. V. 127. id. e2021JE007062. https://doi.org/10.1029/2021JE007062
  15. Haus R., Titov D.V. Sensitivity of temperature retrieval in the Martian atmosphere to transmittance simulation accuracy and instrumental noise // Planet. and Space Sci. 2000. V. 48. № 5. P. 473–481. https://doi.org/10.1016/S0032-0633(00)00020-9
  16. Iwabuchi H., Yang P. Temperature dependence of ice optical constants: Implications for simulating the single-scattering properties of cold ice clouds // J. Quant. Spectrosc. and Radiat. Transfer. 2011. V. 112. № 15. P. 2520–2525. https://doi.org/10.1016/j.jqsrt.2011.06.017
  17. Korablev O., Montmessin F., Trokhimovskiy A., Fedorova A.A., Shakun A.V., Grigoriev A.V., Moshkin B.E., Ignatiev N.I., Forget F., Lefèvre F., and 64 co-authors. The Atmospheric Chemistry Suite (ACS) of three spectrometers for the ExoMars 2016 Trace Gas Orbiter // Space Sci. Rev. 2018. V. 214. id. 7. https://doi.org/10.1007/s11214-017-0437-6
  18. Kuntz M. A new implementation of the Humlicek algorithm for the calculation of the Voigt profile function // J. Quant. Spectrosc. and Radiat. Transfer. 1997. V. 57. № 6. P. 819–824. https://doi.org/10.1016/S0022-4073(96)00162-8
  19. Martin T.Z., Peterfreund A.R., Miner E.D., Kieffer H.H., Hunt G.E. Thermal infrared properties of the Martian atmosphere: 1. Global behavior at 7, 9, 11, and 20 μm // J. Geophys. Res. 1979. V. 84. № B6. P. 2830–2842. https://doi.org/10.1029/JB084iB06p02830
  20. Mastrapa R.M., Sandford S.A., Roush T.L., Cruikshank D.P., Dalle Ore C. M. Optical constants of amorphous and crystal H2O-ice: 2.5–22 mm (4000–455 cm-1) optical constants of H2O-ice // Astrophys. J. 2009. V. 701. № 2. P. 1347–1356. https://doi.org/10.1088/0004-637X/701/2/1347
  21. McCleese D.J., Heavens N.G., Schofield J.T., Abdou W.A., Bandfield J.L., Calcutt S.B., Irwin P.G.J., Kass D.M., Kleinböhl A., Lewis S.R., and 7 co-authors. Structure and dynamics of the Martian lower and middle atmosphere as observed by the Mars Climate Sounder: Seasonal variations in zonal mean temperature, dust, and water ice aerosols // J. Geophys. Res.: Planets. 2010. V. 115. № E12. id. 2010JE003677. https://doi.org/10.1029/2010JE003677
  22. Millour E., Forget F., Spiga A., Vals M., Zakharov V., Montabone L., Lefèvre F., Montmessin F., Chaufray J.-Y., López-Valverde M.A., and 5 co-authors. MCD/GCM Development team. The Mars climate database (version 5.3) // From Mars Express to ExoMars Scientific Workshop. ESA-ESAC Madrid. 27–28 February, 2018. P. 2.
  23. Montabone L., Spiga A., Kass D.M., Kleinboehl A., Forget F., Millour E. Martian year 34 column dust climatology from Mars Climate Sounder observations: Reconstructed maps and model simulations // J. Geophys. Res.: Planets. 2020. V. 125. id. e2019JE006111. https://doi.org/10.1029/2019JE006111
  24. Montmessin F., Ferron S. A spectral synergy method to retrieve martian water vapor column abundance and vertical distribution applied to Mars Express SPICAM and PFS nadir measurements // Icarus. 2019. V. 317. P. 549–569. https://doi.org/10.1016/j.icarus.2018.07.022
  25. Perevalov V.I., Tashkun S.A. CDSD-296 (Carbon Dioxide Spectroscopic Databank): Updated and Enlarged Version for Atmospheric Applications // The 10th HITRAN Database Conference, Harvard-Smithsonian Center for Astrophysics. Zenodo. 22–24 June, 2008. id 17520. https://doi.org/10.5281/zenodo.17520
  26. Revercomb H.E., Buijs H., Howell H.B., LaPorte D.D., Smith W.L., Sromovsky L.A. Radiometric calibration of IR Fourier transform spectrometers: Solution to a problem with the High-Resolution Interferometer Sounder // Appl. Optics. 1988. V. 27. № 15. P. 3210–3218. https://doi.org/10.1364/AO.27.003210
  27. Rodgers C.D. Inverse methods for atmospheric sounding: Theory and practice // World Scientific. 2000. p. 256. https://doi.org/10.1142/3171
  28. Santee M., Crisp D. Thermal structure and dust loading of the Martian atmosphere during late southern summer: Mariner 9 revisited // J. Geophys. Res.: Planets. 1993. V. 98. № E2. P. 3261–3279. https://doi.org/10.1029/92JE01896
  29. Shakun A., Ignatiev I., Luginin M., Grigoriev A., Moshkin B., Grassi D., Arnold G., Maturilli A., Kungurov A., Makarov V., and 11 co-authors. ACS/TIRVIM: Calibration and first results // Conf. Infrared remote sensing and instrumentation XXVI. SPIE. 2018. id. 107650E. https://doi.org/10.1117/12.2322163
  30. Smith M.D., Bandfield J.L., Christensen P.R. Separation of atmospheric and surface spectral features in Mars Global Surveyor Thermal Emission Spectrometer (TES) spectra // J. Geophys. Res.: Planets. 2000. V. 105. № E4. P. 9589–9607. https://doi.org/10.1029/1999JE001105
  31. Smith M.D. Interannual variability in TES atmospheric observations of Mars during 1999–2003 // Icarus. 2004. V. 167. № 1. P. 148–165. https://doi.org/10.1016/j.icarus.2003.09.010
  32. Vago J., Witasse O., Svedhem H., Baglioni P., Haldemann A., Gianfiglio G., Blancquaert T., McCoy D., de Groot R. ESA ExoMars program: The next step in exploring Mars // Sol. Syst. Res. 2015. V. 49. № 7. P. 518–528. https://doi.org/10.1134/S0038094615070199
  33. Vlasov P., Ignatiev N., Guerlet S., Grassi D., Korablev O., Grigoriev A., Shakun A., Patsaev D., Maslov I., Zasova L., and 7 co-authors. Martian atmospheric thermal structure and dust distribution during the MY 34 global dust storm from ACS TIRVIM nadir observations // J. Geophys. Res.: Planets. 2022. V. 127. id. e2022JE007272. https://doi.org/10.1029/2022JE007272
  34. Wolff M.J., Clancy R.T. Constraints on the size of Martian aerosols from Thermal Emission Spectrometer observations // J. Geophys. Res.: Planets. 2003. V. 108. № E9. id. 5097. https://doi.org/10.1029/2003JE002057
  35. Wolkenberg P., Giuranna M., Smith M.D., Grassi D., Amoroso M. Similarities and differences of global dust storms in MY 25, 28, and 34 // J. Geophys. Res.: Planets. 2020. V. 125. id. e2019JE006104. https://doi.org/10.1029/2019JE006104
  36. Zasova L., Grassi D., Formisano V., Maturilli A. The Martian atmosphere in the region of the great volcanoes: Mariner 9 IRIS data revisited // Planet. and Space Sci. 2001. V. 49. P. 977–992. https://doi.org/10.1016/S0032-0633(01)00040-X
  37. Zasova L., Formisano V., Grassi D., Ignatiev N., Maturilli A. Martian winter atmosphere at North high latitudes: Mariner 9 IRIS data revisited // Adv. Space Res. 2002. V. 29. № 2. P. 151–156. https://doi.org/10.1016/S0273-1177(01)00563-4

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (900KB)
3.

Download (362KB)
4.

Download (739KB)
5.

Download (413KB)
6.

Download (510KB)
7.

Download (398KB)
8.

Download (593KB)

Copyright (c) 2023 П.В. Власов, Н.И. Игнатьев, О.И. Кораблев, А.А. Федорова, А.В. Григорьев, Д.В. Пацаев, И.А. Маслов, А.В. Шакун, С. Герле, Д. Грасси, Л.В. Засова

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies