Features of Foreshock Transients at Planetary Bow Shocks

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In front of the bow shock with a quasi-parallel configuration of the interplanetary magnetic field, there exists a region called a foreshock, in which many nonstationary processes take place, the largest of which are collectively named “foreshock transients.” The size of these formations can reach tens of Earth radii, which significantly influences the nature of the solar wind interaction with the magnetosphere. Some types of foreshock transients are also observed at other planets, including those without their own global mag netic field, which indicates the universality of these phenomena. This article lists the most well-known non stationary processes occurring in the foreshock, as well as provides current ideas about the formation mech anisms of the largest foreshock transient.

About the authors

S. D. Shuvalov

Space Research Institute, Russian Academy of Sciences, Moscow, Russia

Author for correspondence.
Email: shuvalovsergei@gmail.com
Россия, Москва

References

  1. Acuna M.H., Connerney J.E.P., Wasilewski P., Lin R.P., Anderson K.A., Carlson C.W., McFadden J., Curtis D.W., Mitchell D., Reme H., Mazelle C., Sauvaud J.A., d’Uston C., Cros A., Medale J.L., Siegfried J.B., Cloutier P., Mayhew M., Winterhalter D., Ness N.F. Magnetic field and plasma observations at Mars: Initial results of the Mars Global Surveyor mission // Science. 1998. V. 279. P. 1676–1680. https://doi.org/10.1126/science.279.5357.1676
  2. Albee A.L., Arvidson R.E., Palluconi F., Thorpe T. Overview of the Mars Global Surveyor mission // J. Geophys. Res. 2001. V. 106. № E10. P. 23291–23316.
  3. Blanco-Cano X., Omidi N., Russell C.T. Global hybrid simulations: Foreshock waves and cavitons under radial IMF geometry // J. Geophys. Res. 2009. V. 114. id. A01216. https://doi.org/10.1029/2008JA013406.
  4. Burgess D., Schwartz S.J. Colliding plasma structures: Current sheet and perpendicular shock // J. Geophys. Res. 1988. V. 93. P. 11.327–11.340.
  5. Burgess D. On the effect of a tangential discontinuity on ions specularly reflected at an oblique shock // J. Geophys. Res. 1989. V. 94. № A1. P. 472–478.
  6. Burgess D., Scholer M. Collisionless shocks in space plasmas: Structure and accelerated particles. Cambridge: Cambridge Univ. Press, 2015. 365 p.
  7. Carlson C.W., Curtis D.W., Paschmann G., Michel W. An instrument for rapidly measuring plasma distribution functions with high resolution // Adv. Space Res. 1982. V. 2. № 7. P. 67–70. https://doi.org/10.1016/0273-1177(82)90151-X
  8. Chen L.J., Wang S., Ng J., Bessho N., Tang J.M., Fung S.F., Le G., Gershman D., Giles B., Russel C.T., Torbert R., Burch J. Solitary magnetic structures at quasi-parallel collisionless shocks: Formation // Geophys. Res. Lett. 2021. V. 48. id. e2020GL090800. https://doi.org/10.1029/2020GL090800
  9. Collinson G.A., Sibeck D.G., Masters A., Shane N., Slavin J.A., Coates A.J., Zhang T.L., Sarantos M., Boardsen S., Moore T.E., Barabash S. Hot flow anomalies at Venus // J. Geophys. Res. 2012. V. 117. id. A04204. https://doi.org/10.1029/2011JA017277.
  10. Collinson G.A., Sibeck D.G., Masters A., Shane N., Zhang T.L., Fedorov A., Barabash S., Coates A.J., Moore T.E., Slavin J.A., Uritsky V.M., Boardsen S., Sarantos M. A survey of hot flow anomalies at Venus // J. Geophys. Res. Space Phys. 2014. V. 119. P. 978–991. https://doi.org/10.1002/2013JA018863
  11. Collinson G., Halekas J., Grebowsky J., Connerney J., Mitchell D., Espley J., DiBraccio G., Mazelle C., Sauvaud J.A., Fedorov A., Jakosky B. A hot flow anomaly at Mars // Geophys. Res. Lett. 2015. V. 42. P. 9121–9127. https://doi.org/10.1002/2015GL065079
  12. Edmiston J.P., Kennel C.F., Eichler D. Escape of heated ions upstream of quasi-parallel shocks // Geophys. Res. Lett. 1982. V. 9. № 5. P. 531–534.
  13. Eastwood J.P., Lucek E.A., Mazelle C., Meziane K., Narita Y., Pickett J., Treumann R.A. The foreshock // Space. Sci. Rev. 2005. V. 118. P. 41–94.
  14. Eastwood J.P., Sibeck D.G., Angelopoulos V., Phan T.D., Bale S.D., McFadden J.P., Cully C.M., Mendle S.B., Larson D., Frey S., Carlson C.W., Glassmeier K.-H., Auster H.U., Roux A., Le Contel O. THEMIS observations of a hot flow anomaly: Solar wind, magnetosheath, and ground-based measurements // Geophys. Res. Lett. 2008. V. 35. id. L17S03. https://doi.org/10.1029/2008GL033475.
  15. Facsko G., Kecskemety K., Erdos G., Tatrallyay M., Daly P.W., Dandouras I. A statistical study of hot flow anomalies using Cluster data // Adv. Space Res. 2008. V. 41. P. 1286–1291.
  16. Facsko G., Nemeth Z., Erdos G., Kis A., Dandouras I. A global study of hot flow anomalies using Cluster multi-spacecraft measurements // Ann. Geophys. 2009. V. 27. № 5. P. 2057–2076. https://doi.org/10.5194/angeo-27-2057-2009
  17. Formisano V. Orientation and shape of the Earth′s bow shock in three dimensions // Planet. and Space Sci. 1979. V. 27. P. 1151–1161.
  18. Fuselier S.A. Ion distributions in the Earth’s foreshock upstream from the bow shock // Adv. Space Res. 1995. V. 15. P. 43–52.
  19. Jakosky B.M., Lin R.P., Grebowsky J.M., Luhmann J.G., Mitchell D.F., Beutelschies G., Priser T., Acuna M., Andersson L., Baird D., Baker D., Bartlett R., Benna M., Bougher S., Brain D., et al. The Mars Atmosphere and Volatile Evolution (MAVEN) Mission // Space Sci. Rev. 2015. V. 195. P. 3–48. https://doi.org/10.1007/s11214-015-0139-x
  20. Lin Y. Global-scale simulation of foreshock structuresat the quasi-parallel bow shock // J. Geophys. Res. 2003. V. 108. №. A11. P. 1390. https://doi.org/10.1029/2003JA009991
  21. Lu J.Y., Zhou Y., Ma X., Wang M., Kabin K., Yuan H.Z. Earth’s bow shock: A new three-dimensional asymmetric model with dipole tilt effects // J. Geophys. Res.: Space Phys. 2019. V. 124. P. 5396–5407. https://doi.org/10.1029/2018JA026144
  22. Lucek E.A., Horbury T.S., Balogh A., Dandouras I., Rème H. Cluster observations of hot flow anomalies // J. Geophys. Res. 2004. V. 109. id. A06207. https://doi.org/10.1029/2003JA010016.
  23. Lyu L.H., Kan J.R. Ion leakage, ion reflection, ion heating and shock-front reformation in a simulated supercritical quasi-parallel collisionless shock // Geophys. Res. Lett. 1990. V. 17. № 8. P. 1041–1044.
  24. Masters A., Arridge C.S., Dougherty M.K., Berucci C., Billingham L., Schwartz S.J., Jackman C.M., Bebesi Z., Coates A.J., Thomsen M.F. Cassini encounters with hot flow anomaly-like phenomena at Saturn’s bow shock // Geophys. Res. Lett. 2008. V. 35. id. L02202. https://doi.org/10.1029/2007GL032371.
  25. Masters A., McAndrews H.J., Steinberg J.T., Thomsen M.F., Arridge C.S., Dougherty M.K., Billingham L., Schwartz S.J., Sergis N., Hospodarsky G.B., Coates A.J. Hot flow anomalies at Saturn’s bow shock // J. Geophys. Res. 2009. V. 114. id. A08217. https://doi.org/10.1029/2009JA014112.
  26. Omidi N. Formation of foreshock cavities // Turbulence and Nonlinear Processes in Astrophysical Plasmas, AIP Conf. Proc. 2007. V. 932. P. 181–190. https://doi.org/10.1063/1.2778962.
  27. Omidi N., Sibeck G. Formation of hot flow anomalies and solitary shocks // J. Geophys. Res. 2007. V. 112. id. A01203. https://doi.org/10.1029/2006JA011663.
  28. Omidi N., Eastwood J.P., Sibeck D.G. Foreshock bubbles and their global magnetospheric impacts // J. Geophys. Res. 2010. V. 115. id. A06204.
  29. Omidi N., Sibeck D., Blanco-Cano X., Rojas-Castillo D., Turner D., Zhang H., Kajdič P. Dynamics of the foreshock compressional boundary and its connection to foreshock cavities // J. Geophys. Res.: Space Phys. 2013. V. 118. P. 823–831. https://doi.org/10.1002/jgra.50146
  30. Omidi N., Lee S.H., Sibeck D.G. Ion acceleration by foreshock bubbles // J. Geophys. Res.: Space Phys. 2021. V. 126. №. 5. id. e2020JA028924. https://doi.org/10.1029/2020JA028924.
  31. Paschmann G., Haerendel G., Sckopke N., Mobius E., Liihr H., Carlson C.W. Three-dimensional plasma structures with anomalous flow directions near the Earth’s bow shock // J. Geophys. Res. 1988. V. 93. № A10. P. 11279–11294.
  32. Paschmann G., Schwartz S., Escoubet C.P., Haaland S. Outer magnetospheric boundaries: Cluster results. Berlin: Springer, 2005.
  33. Øieroset M., Mitchell D.L., Phan T.D., Lin R.P., Acuña M.H. Hot diamagnetic cavities upstream of the Martian bow shock // Geophys. Res. Lett. 2001. V. 28. P. 887–890.
  34. Schwartz S.J., Chaloner C.P., Hall D.S., Christiansen P.J., Johnstones A.D. An active current sheet in the solar wind // Nature. 1985. V. 318. P. 269–271.
  35. Schwartz S.J., Kessel R.L., Brown C.C., Woolliscroft J.C., Dunlop M.W., Farrugia C.J., Hall D.S. Active current sheets near the Earth’s bow shock // J. Geophys. Res. 1988. V. 93. № A10. P. 11295–11310.
  36. Schwartz S.J., Burgess D. Quasi-parallel shocks: A patchwork of three-dimensional structures // Geophys. Res. Lett. 1991. V. 18. P. 373–376.
  37. Schwartz S.J. Hot flow anomalies near the Earth’s bow shock // Adv. Space Res. 1995. V. 15. № 8–9. P. 107–116. https://doi.org/10.1016/0273-1177 (94)00092-F.
  38. Sibeck D.G., Phan T.D., Lin R.P., Lepping R.P., Szabo A. Wind observations of foreshock cavities: A case study // J. Geophys. Res. 2002. V. 107. P. 1271.
  39. Slavin J.A., Acuna M.H., Anderson B.J., Barabash S., Benna M., Boardsen S.A., Fraenz M., Gloecker G., Gold R.E., Ho G.C., Korth H., Krimigis S.M., McNutt R.L., Raines J.M., Sarantos M., Solomon S.C., Zhang T., Zurbuchen T.H. MESSENGER and Venus Express observations of the solar wind interaction with Venus // Geophys. Res. Lett. 2009. V. 36. id. L09106. https://doi.org/10.1029/2009GL037876.
  40. Thomas V.A., Brecht S.H. Evolution of diamagnetic cavities in the solar wind // J. Geophys. Res. 1988. V. 93. № A10. P. 11,341–11,353.
  41. Thomsen M.F., Schwartz S.J., Gosling J.T. Observational evidence on the origin of ions upstream of the Earth’s bow shock // J. Geophys. Res. 1983. V. 88. № A10. P. 7843–7852.
  42. Thomsen M.F., Gosling J.T., Fuselier S.A., Bame S.J., Russell C.T. Hot, diamagnetic cavities upstream from the Earth’s bow shock // J. Geophys. Res. 1986. V. 91. P. 2961–2973.
  43. Thomsen M.F., Gosling J.T., Bame S.J., Quest K.B., Russell C.T., Fuselier S.A. On the origin of hot diamagnetic cavities near the Earth’s bow shock // J. Geophys. Res. 1988. V. 93. P. 11311–11325.
  44. Tjulin A., Lucek E.A., Dandouras I. Observations and modeling of particle dispersion signatures at a hot flow anomaly // J. Geophys. Res. 2009. V. 114. id. A06208. https://doi.org/10.1029/2009JA014065.
  45. Tsurutani B.T., Stone R.G. Collisionless shocks in the heliosphere: Reviews of current research // Geophys. Monograph, Washington: Am. Geophys. Union. 1985. https://doi.org/10.1029/GM035.
  46. Turc L., Ganse U., Pfau-Kempf Y., Hoilijoki S., Battarbee M., Juusola L., Jarvinen R., Brito T., Grandin M., Palmroth M. Foreshock properties at typical and enhanced interplanetary magnetic field strengths: results from hybrid-Vlasov simulations // J. Geophys. Res.: Space Phys. 2018. V. 123. P. 5476–5493. https://doi.org/10.1029/2018JA025466
  47. Turner D.L., Omidi N., Sibeck D.G., Angelopoulos V. First observations of foreshock bubbles upstream of Earth’s bow shock: Characteristics and comparisons to HFAs // J. Geophys. Res.: Space Phys. 2013. V. 118. P. 1552–1570. https://doi.org/10.1002/jgra.50198
  48. Turner D.L., Wilson L.B., Liu T.Z., Cohen I.J., Schwartz S.J., Osmane A., Fennell J.F., Clemmons J.H., Blake J.B., Westlake J., Mauk B.H., Jaynes A.N., Leonard T., Baker D.N., Strangeway R.J. et al. Autogenous and efficient acceleration of energetic ions upstream of Earth’s bow shock // Nature. 2018. V. 561. P. 206–210. https://doi.org/10.1038/s41586-018-0472-9
  49. Uritsky V.M., Slavin J.A., Boardsen S.A., Sundberg T., Raines J.M., Gershman D.J., Collinson G., Sibeck D., Khazanov G.V., Anderson B.J., Korth H. Active current sheets and candidate hot flow anomalies upstream of Mercury’s bow shock // J. Geophys. Res.: Space Phys. 2014. V. 119. P. 853–876. https://doi.org/10.1002/2013JA019052
  50. Vaisberg O.L., Waite J.H., Avanov L.A., Smirnov V.N., Dempsey D.L., Burch J.L., Skalsky A.A. HFA-like signatures observed with Interball-tail spacecraft // Proc. Solar Wind 9 Conf. 1999. V. 471. P. 551–554. Am. Inst. of Phys. Conf., College Park, Md.
  51. Valek P.W., Thomsen M.F., Allegrini F., Bagenal F., Bolton S., Connerney J., Ebert R.W., Gladstone R., Kurth W.S., Levin S., Louarn P., Mauk B., McComas D.J., Pollock C., Reno M. Szalay J.R., Weidner S., Wilson R.J. Hot flow anomaly observed at Jupiter’s bow shock // Geophys. Res. Lett. 2017. V. 44. P. 8107–8112. https://doi.org/10.1002/2017GL073175
  52. Xiao T., Zhang H., Shi Q.Q., Zong Q.-G., Fu S.U., Tian A.M., Sun W.J., Wang S., Parks G.K., Yao S.T., Reme H., Dandouras I. Propagation characteristics of young hot flow anomalies near the bow shock: Cluster observations // J. Geophys. Res.: Space Phys. 2015. V. 120. P. 4142–4154. https://doi.org/10.1002/2015JA021013
  53. Zhang H., Sibeck D.G., Zong Q.-G., Gary S.P., McFadden J.P., Larson D., Glassmeier K.-H., Angelopoulos V. Time history of events and macroscale interactions during substorms observations of a series of hot flow anomaly events // J. Geophys. Res. 2010.V. 115. id. A12235. https://doi.org/10.1029/2009JA015180.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (1MB)
3.

Download (309KB)
4.

Download (230KB)
5.

Download (1MB)
6.

Download (62KB)
7.

Download (1MB)

Copyright (c) 2023 С.Д. Шувалов

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies