LIDAR for Investigation of the Martian Atmosphere from the Surface

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The lidar device as part of the meteorological complex of the ExoMars-2022 landing platform is designed to study Martian aerosol, the planetary boundary layer, and small-scale atmospheric turbulence. A miniature lidar based on a pulsed semiconductor laser and an avalanche photodiode in the photon counting mode will make it possible to obtain aerosol backscattering profiles along a vertical path from 10 to 1500 m during the day and from 15 to 10000 m at night. In the passive mode, the sky brightness is measured in a narrow spectral range and in a narrow solid angle with a frequency of up to hundreds of hertz. The measured fluctuations can provide information about the turbulence of the daytime atmosphere and its relation to dust activity. In the paper we considered the scientific tasks of the experiment, the program of measurements on the surface of Mars and described in detail the components of the equipment and the features of their work.

About the authors

A. N. Lipatov

Space Research Institute, Russian Academy of Sciences, Moscow, Russia

Email: slip@iki.rssi.ru
Россия, Москва

A. N. Lyash

Space Research Institute, Russian Academy of Sciences, Moscow, Russia

Email: alyash@iki.rssi.ru
Россия, Москва

A. P. Ekonomov

Space Research Institute, Russian Academy of Sciences, Moscow, Russia

Email: slip@iki.rssi.ru
Россия, Москва

V. S. Makarov

Space Research Institute, Russian Academy of Sciences, Moscow, Russia

Email: slip@iki.rssi.ru
Россия, Москва

V. A. Lesnykh

Space Research Institute, Russian Academy of Sciences, Moscow, Russia

Email: slip@iki.rssi.ru
Россия, Москва

V. A. Goretov

Space Research Institute, Russian Academy of Sciences, Moscow, Russia

Email: slip@iki.rssi.ru
Россия, Москва

G. V. Zakharkin

Space Research Institute, Russian Academy of Sciences, Moscow, Russia

Email: slip@iki.rssi.ru
Россия, Москва

L. I. Khlyustova

Space Research Institute, Russian Academy of Sciences, Moscow, Russia

Email: slip@iki.rssi.ru
Россия, Москва

S. A. Antonenko

Space Research Institute, Russian Academy of Sciences, Moscow, Russia

Email: slip@iki.rssi.ru
Россия, Москва

D. S. Rodionov

Space Research Institute, Russian Academy of Sciences, Moscow, Russia

Email: alyash@iki.rssi.ru
Россия, Москва

O. I. Korablev

Space Research Institute of the Russian Academy of Sciences, Moscow, Russia

Author for correspondence.
Email: vs_khorkin@mail.ru
Россия, Москва

References

  1. Калошин Г.А., Козлов В.С., Панченко М.В., Полькин В.В. Локационный измеритель метеорологической дальности видимости в составе лазерного маяка // Оптика атмосферы и океана. 1994. Т. 7. № 10. С. 1444–1449.
  2. Линкин В.М., Липатов А.Н., Ляш А.Н. Микролидар для исследования приземных слоев атмосфер планет // “Современные и перспективные разработки и технологии в космическом приборостроении”, Таруса (25–27 марта 2003 г.) // Сб. докл. ИКИ РАН. 2004. С. 295–308.
  3. Мак-Картни Э. Оптика атмосферы. М.: Изд. МИР, 1979. 422 с.
  4. Arruego I., Apéstigue V., Jiménez-Martín J., Martίnez-Oter J., Álvarez-Rıós F.J., González-Guerrero M., Rivas J., Azcue J., Martίn I., Toledo D., Gómez L., Jiménez-Michavila M., Yela M. DREAMS-SIS: The Solar Irradiance Sensor on-board the ExoMars 2016 lander // Adv. Space Res. 2017. V. 60. P. 103. https://doi.org/10.1016/j.asr.2017.04.002
  5. Arumov G.P., Bukharin A.V., Linkin V.M., Lipatov A.N., Lyash A.N., Makarov V.S., Pershin S.M., Tiurin A.V. Compact aerosol lidar for Martian atmosphere monitoring according to the NASA Mars Surveyor Program '98 // Proc. SPIE. 1999. № 3688. P. 494. https://doi.org/10.1117/12.337558
  6. Bukharin A.V., Linkin V.M., Lipatov A.N., Lyash A.N., Makarov V.S., Pershin S.M., Tiurin A.V. Russian Compact Lidar for NASA Mars Surveyor Program 98 // 19th Int. Laser Radar Conf., Annapolis, Maryland, July 1998. P. 241–244.
  7. Daerden F., Whiteway J.A., Davy R., Verhoeven C., Komguem L., Dickinson C., Taylo P.A., Larsen N. Simulating observed boundary layer clouds on Mars // Geophys. Res. Lett. 2010. V. 37. id. L04203. https://doi.org/10.1029/2009GL041523.
  8. Daerden F., Whiteway J.A., Neary L., Komguem L., Lemmon M.T., Heavens N.G., Cantor B.A., Hébrard E, Smith M.D. A solar escalator on Mars: Self-lifting of dust layers by radiative heating // Geophys. Res. Lett. 2015. V. 42. P. 7319. https://doi.org/10.1002/2015GL064892
  9. Davy R., Taylor P.A., Weng W., Li P.-Y. A model of dust in the Martian lower atmosphere // J. Geophys. Res.: Atmospheres. 2009. V. 114. id. D04108. https://doi.org/10.1029/2008JD010481
  10. Dickinson C., Whiteway J.A., Komguem L., Moores J.E., Lemmon M.T. Lidar measurements of clouds in the planetary boundary layer on Mars // Geophys. Res. Lett. 2010. V. 37. id. L18203. https://doi.org/10.1029/2010GL044317.
  11. Dickinson C., Komguem L., Whiteway J.A., Illnicki M., Popovici V., Junkermann W., Connolly P., Hacker J. Lidar atmospheric measurements on Mars and Earth // Planet. and Space Sci. 2011. V. 59. P. 942. https://doi.org/10.1016/j.pss.2010.03.004
  12. Hinson D., Wang H., Wilson J., Spiga A. Night time convection in water-ice clouds at high northern latitudes on Mars // Icarus. 2022. V. 371. id. 114693. https://doi.org/10.1016/j.icarus.2021.114693.
  13. Ivanov A.B., Muhleman D.O. Opacity of the Martian atmosphere from Mars Orbiter Laser Altimeter (MOLA) observations // Geophys. Res. Lett. V. 25. P. 4417–4420. 1998. https://doi.org/10.1029/1998GL900060
  14. Komguem L., Whiteway J.A., Dickinson C., Daly M., Lemmon M.T. Phoenix LIDAR measurements of Mars atmospheric dust // Icarus. 2013. V. 223. P. 649. https://doi.org/10.1016/j.icarus.2013.01.020
  15. Kurgansky M.V. To the theory of particle lifting by terrestrial and Martian dust devils // Icarus. 2018. V. 300. P. 97. https://doi.org/10.1016/j.icarus.2017.08.029
  16. Mason E.L., Smith M.D. Temperature fluctuations and boundary layer turbulence as seen by Mars Exploration Rovers Miniature Thermal Emission Spectrometer // Icarus. 2021. V. 360. id. 114350. https://doi.org/10.1016/j.icarus.2021.114350.
  17. Measures R.M. Laser Remote Sensing: Fundamentals and Applications. New York: John Wiley, 1984. 510 p.
  18. Moores J.E., Komguem L., Whiteway J.A., Lemmon M.T., Dickinson C., Daerden F. Observations of near-surface fog at the Phoenix Mars landing site // Geophys. Res. Lett. 2011. V. 38. id. L04203. https://doi.org/10.1029/2010GL046315.
  19. Pershin S.M., Linkin V.M., Bukharin A.V., Makarov V.N., Patsaev D., Prochazka I., Hamal K., Dubinin D., Kuznetsov V. Compact “safe eyes” radiation level lidar for environmental media monitoring // Proc. SPIE. 1993. № 2107. P. 336. https://doi.org/10.1117/12.162169
  20. Pershin S.M., Bukharin A.V., Makarov V.N., Linkin V.M., Patsaev D., Prochazka I., Hamal K. Portable nanojoule backscatter lidar for environmental sensing // Proc. SPIE. 1992. № 1752. P. 294. https://doi.org/10.1117/12.130741.
  21. Pershin S.M. Trouble-free compact lidar for in/outdoor atmosphere monitoring // Proc. SPIE. 1995. № 2506. P. 428. https://doi.org/10.1117/12.221044
  22. Petrosyan A., Galperin B., Larsen S.E., Lewis S.R., Määttänen A., Read P.L., Renno N., Rogberg L.P.H.T., Savijärvi H., Siili T., Spiga A., Toigo A., Vázquez L. The Martian atmospheric boundary layer // Rev. Geophys. 2011. V. 49. id. RG3005. https://doi.org/10.1029/2010RG000351.
  23. Read P.L., Galperin B., Larsen S.E., Lewis S.R., Määttänen A., Petrosyan A., Renno N., Savijärvi H., Siili T., Spiga A. The Martian Planetary Boundary Layer // Acm. book. Cambridge Univ. Press, 2017. P. 106. https://doi.org/10.1017/9781139060172.007.
  24. Scaccabarozzi D., Saggin B., Pagliara C., Magni M., Marco Tarabini M., Esposito F., Molfese C., Cozzolino F., Cortecchia F., Dolnikov G., Kuznetsov I., Lyash A., Zakharov A. MicroMED, design of a particle analyzer for Mars // Measurement. 2018. V. 122. P. 466–472. https://doi.org/10.1016/j.measurement.2017.12.041
  25. Smith D.E., Zuber M.T., Frey H.V., Garvin J.B., Head J.W., Muhleman D.O., Pettengill G.H., Phillips R.J., Solomon S.C., Zwally H.J., Banerdt W.B., Duxbury T.C. Topography of the Northern Hemisphere of Mars from the Mars Orbiter Laser Altimeter // Science. 1998. V. 279. P. 1686. https://doi.org/10.1126/science.279.5357.1686
  26. Smith D.E., Zuber M.T., Solomon S.C., Phillips R.J., Head J.W., Garvin J.B., Banerdt W.B., Muhleman D.O., Pettengill G.H., Neumann G.A., Lemoine F.G., Abshire J.B., Aharonson O., Brown C.D., Hauck S.A., Ivanov A.B., McGovern P.J., Zwally H.J., Duxbury T.C. The global topography of Mars and implications for surface evolution // Science. 1999. V. 284. P. 1495. https://doi.org/10.1126/science.284.5419.1495
  27. Spiga A. Turbulence in the lower atmosphere of Mars enhanced by transported dust particles // J. Geophys. Res.: Planets. 2021. V. 126. id. e07066. https://doi.org/10.1029/2021JE007066.
  28. Tamppari L.K., Lemmon M.T. Near-surface atmospheric water vapor enhancement at the Mars Phoenix lander site // Icarus. 2020. V. 343. id. 113624. https://doi.org/10.1016/j.icarus.2020.113624.
  29. Toledo D., Rannou P., Pommereau J.-P., Foujols T. The optical depth sensor (ODS) for column dust opacity measurements and cloud detection on Martian atmosphere // Experimental Astron. 2016. V. 42. P. 61. https://doi.org/10.1007/s10686-016-9500-7
  30. Vago J., Witasse O., Svedhem H., Baglioni P., Haldemann A., Gianfiglio G., Blancquaert T., McCoy D., de Groot R. ESA ExoMars program: The next step in exploring Mars // Sol. Syst. Res. 2015a. V. 49. P. 518. https://doi.org/10.1134/S0038094615070199
  31. Vago J.L., Lorenzoni L., Calantropio F., Zashchirinskiy A.M. Selecting a landing site for the ExoMars 2018 mission // Sol. Syst. Res. 2015b. V. 49. P. 538. https://doi.org/10.1134/S0038094615070205
  32. Whiteway J., Daly M., Carswell A., Cook C.R., Dickenson C., Komguem L., Daly M., Hahn J.F., Taylor P.A. Lidar on the Phoenix mission to Mars // J. Geophys. Res.: Planets. 2008. V. 113. id. E00A08. https://doi.org/10.1029/2007JE003002.
  33. Whiteway J.A., Komguem L., Dickinson C., Cook C., Illnicki M., Seabrook J., Popovici V., Duck T.J., Davy R., Taylor P.A., Pathak J., Fisher D., Carswell A.I., Daly M., Hipkin V., Zent A.P., Hecht M.H., Wood S.E., Tamppari L.K., Renno N., Moores J.E., Lemmon M.T., Daerden F., Smith P.H. Mars water-ice clouds and precipitation // Science. 2009. V. 325. P. 68. https://doi.org/10.1126/science.1172344
  34. Zakharov A.V., Dolnikov G.G., Kuznetsov I.A., Lyash A.N., Esposito F., Molfese C., Arruego Rodríguez I., Seran E., Godefroy M., Dubov A.E., Dokuchaev I.V., Knyazev M.G., Bondarenko A.V., Gotlib V.M., Karedin V.N., Shashkova I.A., Abdelaal M.E., Kartasheva A.A., Shekhovtsova A.V., Bednyakov S.A., Barke V.V., Yakovlev A.V., Grushin V.A., Bychkova A.S., Popel S.I., Korablev O.I., Rodionov D.S., Duxbury N.S., Petrov O.F., Lisin E.A., Vasiliev M.M., Poroikov A.Yu., Borisov N.D., Cortecchia F., Saggin B., Cozzolino F., Brienza D., Scaccabarozzi D., Mongelluzzo G., Franzese G., Porto C., Martín Ortega Rico A., Santiuste N.A., deMingo J.R., Popa C.I., Silvestro S., Brucato J.R. Dust Complex for Studying the Dust Particle Dynamics in the Near-Surface Atmosphere of Mars // Sol. Syst. Res. 2022. V. 56. № 6 . P. 351–368. https://doi.org/10.1134/S0038094622060065
  35. Zuber M.T., Smith D.E., Solomon S.C., Muhleman D.O., Head J.W., Garvin J.B., Abshire J.B., Bufton J.L. The Mars Observer laser altimeter investigation // J. Geophys. Res.: Planets. 1992. V. 97. P. 7781–7797. https://doi.org/10.1029/92JE00341

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (522KB)
3.

Download (118KB)
4.

Download (70KB)
5.

Download (63KB)
6.

Download (66KB)
7.

Download (64KB)
8.

Download (88KB)
9.

Download (74KB)
10.

Download (106KB)
11.

Download (101KB)

Copyright (c) 2023 А.Н. Липатов, А.Н. Ляш, А.П. Экономов, В.С. Макаров, В.А. Лесных, В.А. Горетов, Г.В. Захаркин, Л.И. Хлюстова, С.А. Антоненко, Д.С. Родионов, О.И. Кораблев

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies