Temperature and Pressure Sensors of the Meteorological Complex for the Study of the Mars’s Atmosphere

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Temperature and pressure sensors, which are part of the ExoMars-2022 landing platform (LP) meteorological complex, are designed to measure the main parameters of the Martian atmosphere: temperature, pressure, and vertical component of wind speed. Temperature and pressure measurements begin during the descent, after the separation of the lower hemisphere, when the height above the surface will be from 2.1 to 8.5 km, depending on the descent trajectory. Above, before opening the parachute, the vertical profile of the atmosphere can be obtained using the accelerometer block, which is also part of the meteorological complex. After landing, a long-term monitoring of the near-surface layer of the atmosphere is carried out. Measurements are taken at different heights from the surface. Taking into account the measurement of the vertical component of the wind after landing, the local surface-to-atmosphere heat flux is calculated. The measurements make it possible to obtain the dynamics of the interaction between the atmosphere and the surface. In the paper we considered the scientific problems solved by the sensors, briefly described the measurement program and described in detail the sensors and their characteristics

About the authors

A. N. Lipatov

Space Research Institute, Russian Academy of Sciences, Moscow, Russia

Email: slip@iki.rssi.ru
Россия, Москва

A. P. Ekonomov

Space Research Institute, Russian Academy of Sciences, Moscow, Russia

Email: slip@iki.rssi.ru
Россия, Москва

V. S. Makarov

Space Research Institute, Russian Academy of Sciences, Moscow, Russia

Email: slip@iki.rssi.ru
Россия, Москва

V. A. Lesnykh

Space Research Institute, Russian Academy of Sciences, Moscow, Russia

Email: slip@iki.rssi.ru
Россия, Москва

V. A. Goretov

Space Research Institute, Russian Academy of Sciences, Moscow, Russia

Email: slip@iki.rssi.ru
Россия, Москва

G. V. Zakharkin

Space Research Institute, Russian Academy of Sciences, Moscow, Russia

Email: slip@iki.rssi.ru
Россия, Москва

M. A. Zaitsev

Space Research Institute, Russian Academy of Sciences, Moscow, Russia

Email: slip@iki.rssi.ru
Россия, Москва

L. I. Khlyustova

Space Research Institute, Russian Academy of Sciences, Moscow, Russia

Email: slip@iki.rssi.ru
Россия, Москва

S. A. Antonenko

Space Research Institute, Russian Academy of Sciences, Moscow, Russia

Author for correspondence.
Email: slip@iki.rssi.ru
Россия, Москва

References

  1. Дадаян Ю.А. Методическое пособие к выполнению курсового проекта “Датчик давления”. М.: РГУ нефти и газа им. И.М. Губкина, 2008. Р. 1–29.
  2. Лантратов K. АМС “Марс-8” // Новости космонавтики. 1996. Т. 6. № 22–23. P. 137–138.
  3. Мороз В.И., Изаков М.Н., Линкин В.М. Инженерная модель атмосферы Марса: (Вариант МА-87) // Препр. 1449. М.: ИКИ, 1988. 64 с.
  4. Banfield D., Rodriguez-Manfredi J., Russell C., Rowe K.M., Leneman D., Lai H.R., Cruce P.R., Means J.D., Johnson C.L., Mittelholz A., Joy S.P., Chi P.J., Mikellides I.G., Carpenter S., Navarro S., Sebastian E., Gomez-Elvira J., Torres J., Mora L., Peinado V.,·Lepinette A.,·The TWINS Team Hurst K., Lognonné P., Smrekar S.E., Banerdt W.B.. InSight Auxiliary Payload Sensor Suite (APSS) // Space Sci. Rev. 2019. V. 215. id. 4. https://doi.org/10.1007/s11214-018-0570-x.
  5. Chamberlain T.E., Cole H.L., Dutton R.G., Greene G.C., Tillman J.E., Atmospheric measurements on Mars: the Viking meteorology experiment // Bull. Am. Meteorolog. Soc. 1976. V. 57. № 9. P. 1094–1104. https://doi.org/10.1175/1520-0477(1976)057<1094: AMOMTV>2.0.CO;2
  6. Davy R., Davis J.A., Taylor P.A., Lange C.F., Weng W., Whiteway J., Gunnlaugson H.P. Initial analysis of air temperature and related data from the Phoenix MET station and their use in estimating turbulent heat fluxes // J. Geophys. Res. 2010. V. 115. Iss 3 id E00E13. https://doi.org/10.1029/2009JE003444
  7. Ellehoj M.D., Gunnlaugsson H.P., Taylor P.A., Kahanpää H., Bean K.M., Cantor B.A., Gheynani B.T., Drube L., Fisher D., Harri A.‑M., Holstein-Rathlou C., Lemmon M.T., Madsen M.B., Malin M.C., Polkko J., Smith P.H., Tamppari L.K., Weng W., Whiteway J. Convective vortices and dust devils at the Phoenix Mars mission landing site // JGR: Planets. 2010. V. 115. Iss 4. id E00E16. https://doi.org/10.1029/2009JE003413.
  8. Gómez-Elvira J., Armiens C., Carrasco I., Genzer M., Gómez F., Haberle R, Hamilton V., Harri A., Kahanpää H., Kemppinen O., Lepinette A., Javier Martín Soler, Martín-Torres J., Martínez-Frías J., Mischna M., Mora L., Navarro S., Newman C., Pablo M., Peinado V., Polkko J., Rafkin S., Ramos M., Renno N., Richardson M., Rodriguez-Manfred J., Romeral Planelló Julio J., Sebastián E., Torre Juárez M., Torres J., Urqui R., Vasavada A., Verdasca J., Zorzano M. Curiosity’s rover environmental monitoring station: Overview of the first 100 sols // JGR: Planets. 2014. V. 119. Iss. 7. P. 1680–1688. https://doi.org/10.1002/2013JE004576
  9. Haberle R.M., Gómez-Elvira J., de la Torre Juárez M., Harri A.-M., Hollingsworth J.L., Kahanpää H., Kahre M.A., Lemmon M., Martín-Torres F.J., Mischna M., Moores J.E., Newman C., Rafkin S., Rennó N., Richardson M.I., Rodríguez-Manfredi J.A., Vasavada A.R., Zorzano-Mier M.-P., REMS/MSL Science Teams Preliminary interpretation of the REMS pressure data from the first 100 sols of the MSL mission // JGR: Planets. 2014. V. 119. Iss. 3. P. 440–453. https://doi.org/10.1002/2013JE004488.
  10. Haberle R.M., Catling D.C., Carr M.H., Zahnle K.J. The Atmosphere and Climate of Mars. Cambridge Univ. Press, 2017. P. 497–525. https://doi.org/10.1017/9781139060172.
  11. Harri A.-M., Genzer M., Kemppinen O., Kahanpää H., Gomez-Elvira J., Rodriguez-Manfredi J.A., Haberle R., Polkko J., Schmidt W., Savijärvi H., Kauhanen J., Atlaskin E., Richardson M., Siili T., Paton M., de la Torre Juarez M., Newman C., Rafkin S., Lemmon M.T., Mischna M., Merikallio S., Haukka H., Martin-Torres J., Zorzano M.-P., Peinado V., Urqui R., Lapinette A., Scodary A., Mäkinen T., Vazquez L., Rennó N., REMS/MSL Science Team Pressure observations by the Curiosity rover: Initial results // JGR: Planets. 2014. V. 119. Iss. 1. P. 82–92. https://doi.org/10.1002/2013JE004423.
  12. Harri A.-M., Pichkadze K., Zeleny L.,Vazquez L., Schmidt W., Alexashkin S., Korablev O., Guerrero H., Heilimo J., Uspensky M., Finchenko V., Linkin V., Arruego I., Genzer M., Lipatov A., Polkko J., Paton M., Savijarvi H., Haukka H., Siili T., Khovanskov V., Ostesko B., Poroshin A., Michelena-Diaz M., Siikonen T., Palin M., Vorontsov V., Polyakov A., Valero F., Kemppinen O., Leinonen J., and Romero P. The MetNet vehicle: a lander to deploy environmental stations for local and global investigations of Mars // Geosci. Instrumentation Methods and Data Systems Discuss. 2017. V. 6. № 1. P. 103–124. https://doi.org/10.5194/gi-2016-19
  13. Kremnev R.S., Linkin V.M., Lipatov A.N., Pichkadze K.M., Shurupov A.A., Terterashvili A.V., Bakitko R.V., Blamont J.E., Malique C., Ragent B., Preston R.A., Elson L.S., Crisp D. VEGA Balloon System and Instrumentation // Science 1986. V. 231. Iss. 4744 P. 1408-1411. https://doi.org/10.1126/science.231.4744.1408
  14. Linkin V.M., Kerzhanovich V.V., Lipatov A.N., Shurupov A.A., Seiff A., Ragent B., Young R., Ingersoll A., Crisp D., Elson E., Preston R., Blamont J. Thermal Structure of Venus atmosphere in the Middle Cloud Layer // Science 1986. V. 231. Iss. 4744. P. 1420-1422. https://doi.org/10.1126/science.231.4744.1420
  15. Martinez G.M., Newman C.N., De Vicente-Retortillo A., Fischer E., Renno N.O., Richardson M.I., Fairén A.G., Genzer M., Guzewich S.D., Haberle R.M., Harri A.‑M., Kemppinen O., Lemmon M.T., Smith M.D., de la Torre-Juárez M., Vasavada A.R. The modern near-surface Martian climate: A review of in-situ meteorological data from Viking to Curiosity // Space Sci. Rev. 2017. V. 212. Iss. 1–2. P. 295–338. https://doi.org/10.1007/s11214-017-0360-x
  16. Murphy J.R., Nelli S. Pathfinder convective vortices: Frequency of occurrence // Geophys. Res. Lett. 2002. V. 29. Iss. 23. P. 18-1–18-4.https://doi.org/10.1029/2002GL015214.
  17. Read P., Lewis S. The Martian Climate Revisited: Atmosphere and Environment of a Desert Planet. Berlin, Heidelberg, New York: Springer, 2004. 326 p. https://doi.org/10.5860/ choice.42-0920.
  18. Schofield J.T., Barnes J.R., Crisp D., Haberle R., Larsen S., Magalhāes J.A., Murphy J., Seiff A., Wilson G. The Mars Pathfinder Atmospheric Structure Investigation/Meteorology (ASI/MET) Experiment // Science. 1997. V. 278. Iss. 5344. P. 1752–1758. https://doi.org/10.1126/science.278.5344.1752
  19. Sutton J., Leovy C., Tillman J. Diurnal variations of the Martian surface layer meteorological parameters during the first 45 sols at two Viking lander sites // J. Atmos. Sci. 1978. V. 35. P. 2346–2355. https://doi.org/10.1175/1520-0469(1978)035<2346: DVOTMS> 2.0.CO;2.
  20. Taylor P., Catling D., Daly M., Dickinson C., Gunnlaugsson H.P., Harri Ari-Matti and Lange C. Temperature, pressure, and wind instrumentation in the Phoenix meteorological package // J. Geophys. Res. 2008. V. 113. E00A10, https://doi.org/10.1029/2007JE003015
  21. Tillman J.E., Henry R.M., Hess S.L. Frontal systems during passage of the Martian north polar hood over the Viking Lander 2 site prior to the first 1977 dust storm // J. Geophys. Res. 1979. V. 84. P. 2947–2955. https://doi.org/10.1029/JB084iB06p02947

Supplementary files


Copyright (c) 2023 А.Н. Липатов, А.П. Экономов, В.С. Макаров, В.А. Лесных, В.А. Горетов, Г.В. Захаркин, М.А. Зайцев, Л.И. Хлюстова, С.А. Антоненко

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies