Formation of a Plasma Layer During the Passage of the Moon through the Magnetic Ropes of the Solar Wind

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In the absence of a dense atmosphere and a general magnetic field around the Moon, solar wind particles reach the lunar surface and are almost completely absorbed. When the Moon passes through the plasma medium of the solar wind magnetic ropes, the electric currents of the rope can strongly change the electric potential of the lunar surface on the day and night surfaces, and in the case when the current density vectors of the rope and the direction to the Sun are close to colinear, there is the possibility of sufficiently strong ring currents, the magnetic field of which tends to displace the magnetic field of the rope and lead to the formation of a plasma layer with a height of the order of the electron Larmor radius.

About the authors

A. S. Nabatov

Kotelnikov Institute of Radioengineering and Electronics (IRE), Russian Academy of Sciences, Moscow, Russia

Email: asnbt@mail.ru
Россия, Москва

A. I. Zakharov

Kotelnikov Institute of Radioengineering and Electronics (IRE), Russian Academy of Sciences, Moscow, Russia

Email: asnbt@mail.ru
Россия, Москва

A. I. Efimov

Kotelnikov Institute of Radioengineering and Electronics (IRE), Russian Academy of Sciences, Moscow, Russia

Author for correspondence.
Email: asnbt@mail.ru
Россия, Москва

References

  1. Москаленко А.М. Электростатический потенциал у поверхности Луны // Кинемат. и физ. небесн. тел. 1992. Т. 8. № 5. С. 31–40.
  2. Попель С.И., Копнин С.И., Голубь А.П., Дольников Г.Г., Захаров А.В., Зеленый Л.М., Извекова Ю.Н. Пылевая плазма у поверхности Луны // Астрон. вестн. 2013. Т. 47. № 6. С. 455–466.
  3. Попель С.И., Голубь А.П., Зеленый Л.М., Хораньи М. Удары высокоскоростных метеороидов и плазменно-пылевое облако над поверхностью Луны // Письма в ЖЭТФ. 2017. Т. 105. Вып. 10. С. 594–599.
  4. Bhardwaj Anil, Dhanya1 M.B., Alok Abhinaw, Barabash S., Wieser M., Futaana Yoshifumi, Wurz Peter, Vorburger Audrey, Holmström Mats, Lue Charles, Harada Yuki, Asamura Kazushi. A new view on the solar wind interaction with the Moon // Geosci. Lett. 2015. 2:10
  5. Bittencourt J.A. Fundamentals of plasma physics. New York: Springer Science + Business Media, 2004. 320 p.
  6. Buhler C., Calle C., Clements J., Mantovani J., Ritz M. Test method for in situ electrostatic characterization of lunar dust // IEEE Aerospace Conf. Proc. 2007. P. 1–19.
  7. Burlaga L.F. Interplanetary Magnetohydrodynamics // Int. Ser. in Astron. and Astrophys. V. 3. New York: Oxford Univ. Press, 1995. P. 272.
  8. Carrier W.D. III, Olhoeft G.R., Mendell W. Physical properties of the lunar surface // Lunar Sourcebook. Cambridge: Cambridge Univ. Press, 1991. P. 475–594.
  9. Choudhary R.K., Ambili K.M., Siddhartha Choudhury, Dhanya M.B., Bhardwaj A. On the origin of the ionosphere at the Moon using results from Chandrayaan-1 S-Band Radio Occultation Experiment and a photochemical model // Geophys. Res. Lett. 2016. 43(19). P. 10 025–10 033.
  10. Cohen R.H., Ryutov D.D. Sheath physics and boundary conditions for edge plasmas // Contrib. Plasma Phys. 2004. V. 44. № 1–3. P. 111–125.
  11. Dyal P., Parkin C.W., Daily W.D. Structure of the lunar interior from magnetic field measurements // Proc. Lunar Sci. Conf. 7th. 1976. P. 3077–3095.
  12. Feng H.Q., Wu D.J., Chao J.K. Size and energy distributions of interplanetary magnetic flux ropes // J. Geophys. Res. 2007. V. 112. A02102.
  13. Feng H.Q., Wu D.J., Lin C.C., Chao J.K., Lee L. C., Lyu L.H. Interplanetary small- and intermediate-sized magnetic flux ropes during 1995–2005 // J. Geophys. Res. 2008. V. 113. id. A12105.
  14. Freeman J.W., Ibrahim M. Lunar electric fields, surface potential and associated plasma sheaths // The Moon. 1975. V. 14. P. 103–114.
  15. Halekas J.S., Delory G.T., Lin R.P., Stubbs T.J., Farrell W.M. Lunar Prospector observations of the electrostatic potential of the lunar surface and its response to incident currents // J. Geophys. Res. 2008. V. 113. id. A09102.
  16. Hidalgo M.A., Cid C., Medina J., Viñas A.F. A new model for the topology of magnetic clouds in the solar wind // Sol. Phys. 2000. V. 194. P. 165–174.
  17. Hidalgo M.A., Cid C. A non-force-free approach to the topology of magnetic clouds in the solar wind // J. Geophys. Res. 2002. V. 106. Iss. A1. P. 1002.
  18. Holmström M. The interaction between the Moon and the solar wind // AGU Fall Meeting, December 6, 2012. P43D-1940.
  19. Imamura T., Nabatov A., Mochizuki N., Iwata T., Hanada H., Matsumoto K., Noda H., Kono Y., Liu Q., Futaana Y., Ando H., Yamamoto Z., Oyama K.-I., Saito A. Radio occultation measurement of the electron density near the lunar surface using a subsatellite on the SELENE mission // J. Geophys. Res. 2012. V. 117. id. A06303.
  20. Jordan A.P., Stubbs T.J., Wilson J.K., Schwadron N.A., Spence H.E., Joyce C.J. Deep dielectric charging of regolith within the Moon’s permanently shadowed regions// J. Geophys. Res. E: Planets. 2014. V. 119 (8). P. 1806–1821.
  21. Lepping R.P., Burlaga L.F., Jones J.A. Magnetic field structure of interplanetary magnetic clouds at 1 AU // J. Geophys. Res. 1990. V. 95. P. 11 957–11 965.
  22. Mitchell D.L., Halekas J.S., Lin R.P., Frey S., Hood L.L., Acuña M.H., Binder A. Global mapping of lunar crustal magnetic fields by Lunar Prospector // Icarus. 2008. V. 194. P. 401–409.
  23. Ness N.F. Interaction of the solar wind with the Moon // Sol. Terr. Phys. 1970. Part II. P. 159–205.
  24. Nitter T., Havnes O., Melandso F. Levitation and dynamics of charged dust in the photoelectron sheath above surfaces in space // J. Geophys. Res. 1998. V. 103. P. 6605–6620.
  25. Olhoeft G.R., Strangway D.W. Dielectric properties of the first 100 meters of the Moon // Earth and Planet. Sci. Lett. 1975. V. 24. P. 394–400.
  26. Pluchino S., Schilliro F., Salerno E., Pupillo G., Maccaferri G., Cassaro P. Radio occultation measurements of the lunar ionosphere // Mem. S. A. It. Suppl. 2008. V. 12. P. 53.
  27. Popel S.I., Golub’ A.P., Kassem A.I., Zelenyi L.M. Dust dynamics in the lunar dusty plasmas: Effects of magnetic fields and dust charge variations // Phys. Plasmas. 2022. V. 29. № 1. id. A013701.
  28. Savich N.A. Cislunar plasma model // Space Res. 1976. V. 16. P. 941–943.
  29. Stern S.A. The lunar atmosphere: history, status, current problems, and context // Rev. Geophys. 1999. V. 37. Iss. 4. P. 453–491.
  30. Stubbs T.J., Vondrak R.R., Farrell W.M. A dynamics fountain model for lunar dust // Adv. Space Res. 2006. V. 37. P. 59–66.
  31. Stubbs T.J., Glenar D.A., Farrell W.M., Vondrak R.R., Collier M.R., Halekas J.S., Delory G.T. On the role of dust in the lunar ionosphere // Planet. and Space Sci. 2011. V. 59. P. 1659–1664.
  32. Vyshlov A.S., Savich N.A., Vasilyev M.B., Samoznaev L.N., Sidorenko A.I., Shtern D.Y. Some results of cislunar plasma research // NASA Tech. Rep. 1976. V. 397. P. 81–85.
  33. Walbridge E. Lunar photoelectron layer // J. Geophys. Res. 1973. V. 78. № 19. P. 3668–3687.
  34. Wang X., Pilewskie J., Hsu H.-W., Horányi M. Plasma potential in the sheaths of electron-emitting surfaces in space // Geophys. Res. Lett. 2015. V. 43. P. 525–531.
  35. Zhang H., Khurana K.K., Zong Q.-g., Kivelson M.G., Hsu T.-s., and 9 co-authors. Outward expansion of the lunar wake: ARTEMIS observations // Geophys. Res. Lett. 2012. V. 39. Iss. 18. id. L18104.
  36. Zhang H., Khurana K.K., Kivelson M.G., Angelopoulos V., Wan W.X., Liu L.B., Zong Q.-G., Pu Z.Y., Shi Q.Q., Liu W.L. Three-dimensional lunar wake reconstructed from ARTEMIS data // J. Geophys. Res.: Space Physics. 2014. V. 119. P. 5220–5243.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (215KB)
3.

Download (194KB)
4.

Download (91KB)
5.

Download (221KB)
6.

Download (130KB)
7.

Download (42KB)
8.

Download (40KB)
9.

Download (257KB)

Copyright (c) 2022 А.С. Набатов, А.И. Захаров, А.И. Ефимов

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».