Jeans Instability of an Astrophysical Self-Gravitating Medium in the Presence of High Radiation Pressure and Diffuse Radiative Transfer

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Within the problem of modeling the evolution of a protostellar disk, a discussion is presented on the effect of radiation on the Jeans gravitational instability for a self-gravitating optically thick (for intrinsic infrared radiation) gas-and-dust medium, taking into account the influence of radiation pressure perturbations and radiative diffusion transfer on the critical wavelength. Two radiative diffusion approximations are considered: the case of perfect thermal equilibrium with the same temperature of matter and radiation and the case of the time dependence of the radiation field with an energy separation between radiation and matter. An analysis of the normal regime of modes is used to derive dispersion relations, which enable the derivation of modifications of the classical Jeans instability criterion under the influence of radiation pressure and radiation diffusion. In particular, it is shown that, in contrast to the system’s local thermodynamic equilibrium, where the acoustic velocity of perturbed gas propagates with the isothermal speed of sound, in the case of different temperatures of radiation and gas, the perturbing wave propagates with the adiabatic speed of sound in gas. The results obtained are aimed at solving the problem of gravitational instability of individual massive protostellar disks or self-gravitating radiative media characterized by large optical depths for their dust-transformed intrinsic infrared radiation.

About the authors

A. V. Kolesnichenko

Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Moscow, Russia

Author for correspondence.
Email: kolesn@keldysh.ru
Россия, Москва

References

  1. Бисикало Д.В., Жилкин А.Г., Боярчук А.А. Газодинамика тесных двойных звезд. М.: Физматлит, 2013. 632 с.
  2. Бисикало Д.В., Шематович В.И., Кайгородов П.В., Жилкин А.Г. Газовые оболочки экзопланет – горячих юпитеров // Успехи физ. наук. 2021. Т. 191. № 8. С. 785–845.
  3. Колесниченко А.В. Вывод в рамках неэкстенсивной кинетики критерия гравитационной неустойчивости Джинса для допланетного вращающегося облака с учетом радиации и магнитного поля // Mathematica Montisnigri. 2020. V. XLVII. P. 176–200.
  4. Колесниченко А.В. Роль черного излучения в модификации критериев неустойчивости Джинса для экзопланетного пылевого плазменного диска при учете магнитной вязкости и лучевого теплообмена // Препр. ИПМ им. М.В. Келдыша. 2022. № 3. 40 с.
  5. Ландау Л.Д., Лифшиц Е.М. Статистическая механика. М.: Наука, 1976. 588 с.
  6. Маров М.Я., Шевченко И.И. Экзопланеты. Ижевск: Институт компьютерных исследований, 2017. 140 с.
  7. Тассуль Ж.-Л. Теория вращающихся звезд. М.: Мир, 1982. 472 с.
  8. Франк-Каменецкий Д.А. Физические процессы внутри звезд. М.: Физматгиз, 1959. с. 543.
  9. Фридман А.М., Хоперсков А.В. Физика галактических дисков. М.: Физматлит, 2011. 640 с.
  10. Хоперсков А.В., Храпов С.С. Неустойчивость тепловой, вязкой и акустических мод в тонких аккреционных дисках // Астрон. журн. 1999. Т. 76. № 4. С. 256–269.
  11. Agol E., Krolik J. Photon damping of waves in accretion disks // Astrophys. J. 1998. V. 507. № 1. P. 304–315.
  12. Aggrawal M., Talwar S.P. Magnetothermal instability in a rotating gravitating fluid // Mon. Notic. Roy. Astron. Soc. 1969. V. 146. P. 235–242.
  13. Argal S., Tiwari A., Sharma P.K. Jeans instability of a rotating self-gravitating viscoelastic fluid // Europhys. Lett. 2014. V. 108. id. 35003.
  14. Bhatia P.K. Gravitational instability of a rotating anisotropic plasma // Physics of Fluids. 1967. V. 10. № 8. P. 1652–1653.
  15. Blaes O., Socrates A. Local dynamical instabilities in magnetized, radiation pressure supported accretion disks // Astrophys. J. 2001. V. 553. № 2. P. 987–998.
  16. Blaes O., Socrates A. Local radiative hydrodynamic and magnetohydrodynamic instabilities in optically thick media // Astrophys. J. 2003. V. 596. № 1. P. 509–537.
  17. Bora M.P., Nayyar N.K. Gravitational instability of a heat-conducting plasma // Astrophys. and Space Sci. 1991. V. 179. P. 313–320.
  18. Borah A.C., Sen A.K. Gravitational instability of partially ionized molecular clouds // J. Plasma Physics. 2007. V. 73. № 6. P. 831–838.
  19. Buchler J.R. Radiation hydrodynamics in the fluid frame // J. Quant. Spectrosc. and Radiat. Transfer. 1979. V. 22. P. 293–300.
  20. Chandrasekhar S. Hydrodynamics and Hydromagnetic Stability. Oxford: Clarendon Press, 1961. 588 p.
  21. Chang P., Quataert E., Murray N. From thin to thick: The impact of X-ray irradiation on accretion disks in active galactic nuclei // Astrophys. J. 2007. V. 662. № 1. P. 94–101.
  22. Chhajlani R.K., Vaghela D.S. Gravitational stability of finitely conducting two-component plasma through porous medium // Astrophys. and Space Sci. 1987. V. 139. P. 337–352.
  23. Cox J.P. Theory of Stellar Pulsation. Princeton, New Jersey: Princeton Univ. Press, 1979. 378.
  24. Cox J.P., Giuli R.T. Principles of Stellar Structure. New York: Gordon and Dreach, 1968. 568 p.
  25. Dhiman J.S., Dadwal R. The gravitational instability of a non-uniformly rotating heat conducting medium in the presence of non-uniform magnetic field // Astrophys. and Space Sci. 2011. V. 332. № 2. P. 373–378.
  26. Dhiman J.S., Dadwal R. On the Jeans criterion of a stratified heat conducting gaseous medium in the presence of non-uniform rotation and magnetic field // J. Astrophys. and Astron. 2012. V. 33. P. 363–373.
  27. Dodelson S. Modern Cosmology. Amsterdam (Netherlands): Acad. Press, 2003. 440 p.
  28. Fridman A.M., Polyachenko V.L. Physics of Gravitating System. N.Y.: Springer-Verlag. 1984. V. 1. 468 p.; V. 2. 358 p.
  29. Jacobs G., Shukla P.K. Stability of molecular clouds in partially ionized self-gravitating space plasmas // J. Plasma Physics. 2005. V. 71. № 4. P. 487–493.
  30. Jeans J.H. The stability of spherical nebulae // Philosoph. Transact. Roy. Soc. 1902. V. 199. P. 1–53.
  31. Joshi H., Pensia R.K. Effect of rotation on Jeans instability of magnetized radiative quantum plasma // Physics of Plasmas. 2017. V. 24. № 3. id. 032113.
  32. Hsieh S.-H., Spiegel E.A. The equations of photohydrodynamis // Astrophys. J. 1976. V. 207. P. 244–252.
  33. Hu W., Sugiyama N. Small-scale cosmological perturbations: An analytic approach // Astrophys. J. 1996. V. 471. P. 542–570.
  34. Kaneko N., Tamazawa S., Ono Y. Linear waves in a radiating and scattering grey medium // Astrophys. and Space Sci. 1976. V. 42. № 2. P. 441–461.
  35. Kaneko N., Morita K., Satoh T., Hayasaki K. Small-amplitude disturbances in a radiating and scattering grey medium II. Solutions of given real wave number k // Astrophys. and Space Sci. 2005. V. 299. P. 263–306.
  36. Kaneko N., Morita K. Small-amplitude disturbances in a radiating and scattering grey medium III. Gravitational effects on the solutions of given real wave number k // Astrophys. and Space Sci. 2006. V. 305. P. 349–376.
  37. Kaothekar S., Chhajlani R.K. Effect of radiative heat-loss function and finite Larmor radius corrections on Jeans instability of viscous thermally conducting self-gravitating astrophysical plasma // ISRN Astron. and Astrophys. 2012. V. 2012. id. 420938 (14 p.).
  38. Kolesnichenko A.V. Jeans instability of a protoplanetary gas cloud with radiation in nonextensive Tsallis kinetics // Sol. Syst. Res. 2020. V. 54. №. 2. P. 137–149.
  39. Kolesnichenko A.V. Jeans instability of a protoplanetary circular disk taking into account the magnetic field and radiation in nonextensive Tsallis kinetics // Sol. Syst. Res. 2021. V. 55. № 2. P. 132–149.
  40. Kumar A., Sutar D.L., Pensia R.K., Sharma S. Effect of fine dust particles and finite electron inertia of rotating magnetized plasma // AIP Conf. Proc. 2018. V. 1953. № 1. id. 060036 (4 p.).
  41. Kumar A., Sutar D.L., Pensia RK. Jeans instability of a monatomic gas in the presence of thermal radiation // J. Phys.: Conf. Ser. 2017. V. 836. id. 012012 (3p.).
  42. Mihalas D., Mihalas B.W. On the propagation of acoustic waves in a radiative fluid // Astrophys. J. 1984. V. 283. P. 469.
  43. Pensia R.K., Sutar D.L., Sharma S. Analysis of Jeans instability of optically thick quantum plasma under the effect of modified Ohms law // AIP Conf. Proc. 2018. V. 1953. № 1. id. 060044 (4 p.).
  44. Pier E.A., Krolik J.H. Radiation-pressure-supported obscuring tori around active galactic nuclei // Astrophys. J. 1992. V. 399. № 1. P. L23–L26.
  45. Peebles P.J.E., Yu J.T. Primeval adiabatic perturbation in an expanding universe // Astrophys. J. 1970. V. 162. P. 815–836.
  46. Prajapati R.P., Chhajlani R.K. Gravitational Instability of Dusty Plasma with Radiative Process // AIP Conf. Proc. 2011. V. 1397. P. 267–268.
  47. Prajapati R.P., Sharma P.K., Sanghvi R.K., Chhajlani R.K. Jeans instability of self-gravitating magnetized strongly coupled plasma // J. Phys.: Conf. Ser. 2012. V. 365. id. 012040 (4 p.).
  48. Prajapati R.P., Bhakta S. Influence of dust charge fluctuation and polarization force on radiative condensation instability of magnetized gravitating dusty plasma // Phys. Lett. A. 2015. V. 379. № 42. P. 2723–2729.
  49. Silk J. Fluctuations in the primordial fireball // Nature. 1967. V. 215. № 5106. P. 1155–1156.
  50. Silk J. Cosmic black-body radiation and galaxy formation // Astrophys. J. 1968. V. 151. P. 459–471.
  51. Shaikh S., Khan A., Bhatia P.K. Jeans’ gravitational instability of a thermally conducting plasma. // Phys. Lett. A. 2008. V. 372. № 9. P. 1451–1457.
  52. Sharma R.C. Gravitational instability of a rotating plasma // Astrophys. and Space Sci. 1974. V. 29. P. L1–L4.
  53. Sharma R.C., Patidar A. Effect of ion radiative cooling on Jeans instability of partially ionized dusty plasma with dust charge fluctuation // Physics of Plasmas. 2017. V. 24. id. 013705 (13 p.).
  54. Sharma R.C., Singh B. Gravitational instability of a rotating and partially-ionized plasma in the presence of variable magnetic field // Astrophys. and Space Sci. 1988. V. 143. P. 233–239.
  55. Thompson T.A., Quataert E., Murray N. Radiation pressure-supported starburst disks and active galactic nucleus fueling // Astrophys. J. 2005. V. 630. № 1. P. 167–185.
  56. Tsintsadze N.L., Chaudhary R., Shah H.A., Murtaza G. Jeans instability in a magneto-radiative dusty plasma // J. Plasma Physics. 2008. V. 74. № 6. P. 847–853.
  57. Vaghela D.S., Shrivastava H.S.P. Magnetogravitational instability of a rotating homogeneous gas cloud with radiation // Czechoslovak J. Physics. 1994. V. 44. № 10. P. 905–911.
  58. Vranješ J. Gravitational instability of a quasi-homogeneous plasma cloud with radiation // Astrophys. and Space Sci. 1990. V. 173. № 2. P. 293–298.
  59. Vranješ J., Čadež V. Gravitational instability of a homogeneous gas cloud with radiation // Astrophys. and Space Sci. 1990. V. 164. № 2. P. 329–331.
  60. Weinberg S. Entropy generation and the survival of protogalaxies in an expanding universe // Astrophys. J. 1971. V. 168. P. 175–194.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 А.В. Колесниченко

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».