The Geochemical Effect of Impact Processing of Polar Regolith on the Moon

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper considers the geochemical effects of impact processing of the polar regolith of the Moon. It contains an admixture of water ice, which can (should?) provide conditions for possible chemical reactions. To date, only one geochemical effect was reliably found—the formation of hematite Fe2O3, which is uncharacteristic for relatively low selenographic latitudes. In the work, a thermodynamic analysis of the conditions required for the formation of hematite is carried out. It is shown that this requires the presence of free oxygen, which (this is a possible option) can accumulate during the dissipation into outer space of hydro gen formed during water decomposition. The specific process or processes of hematite formation require fur ther study. It is very likely that impact processing of polar regolith also leads to hydration of silicate glasses and to the formation of heavy hydrocarbons. The dissipation of free hydrogen into outer space, which, apparently, is formed in these processes, should lead to an increase in the deuterium content in the remaining hydrogen. The Н2О ice of the polar regolith likely contains a significant amount of heavy water. Future inves tigations in the polar regions of the Moon, especially with the delivery of samples to Earth, should confirm or refute these conclusions and assumptions.

About the authors

A. T. Basilevsky

Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, Moscow, Russia

Email: atbas@geokhi.ru
Россия, Москва

V. A. Dorofeeva

Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, Moscow, Russia

Email: dorofeeva@geokhi.ru
Россия, Москва

Yuan Li

Suzhou Vocational University, Suzhou, China

Email: atbas@geokhi.ru
Китай, Сучжоу

LiGang Fang

Suzhou Vocational University, Suzhou, China

Author for correspondence.
Email: atbas@geokhi.ru
Китай, Сучжоу

References

  1. Базилевский А.Т., Креславский М.А., Дорофеева В.А., Ли Юань, Фанг ЛиГанг. Ударная переработка реголита в полярных регионах Луны // Астрон. вестн. 2022. Т. 56. № 3. С. 1–9. (Basilevsky A.T., Kreslavsky M.A., Dorofeeva V.A., Li Yun, Fang LiGang. Impact-caused regolith reworking within polar regions of the Moon // Sol. Syst. Res. 2022. V. 56. № 3. P. 155–163. https://doi.org/10.1134/S003809462203001710.1134/S0038094622030017)https://doi.org/10.31857/S0320930X2203001X
  2. Глушко В.П., Гурвич Л.В., Вейц И.В., Медведев В.А., Хачкурузов Г.А. и др. (1–4 том).Иориш В.С., Аристова Н.М., Бергман Г.А., Горохов Л.Н., Гусаров А.В. и др. (5–6 том). Справочник “Термодинамические свойства индивидуальных веществ” в 6 томах. Изд. “Наука”, Москва, 1978–2004 гг.
  3. Демидова С.И., Назаров М.А., Лоренц К.А., Курат Г., Брандштеттер Ф., Нтафлос Т. Химический состав лунных метеоритов и вещества лунной коры // Петрология. 2007. Т. 15. № 4. 416–437.
  4. Дьячкова М.В., Митрофанов И.Г., Санин А.Б., Литвак М.Л., Третьяков В.И. Характеристика мест посадки космического аппарата Луна-25 // Астрон. вестн. 2021. Т. 55. № 6. С. 522–541. (Djachkova M.V., Mitrofanov I.G., Sanin A.B., Litvak M.L., Tret’yakov V.I. Characterization of the Luna-25 landing sites // Sol. Syst. Res. 2021. V. 55. Iss. 6. P. 509–528. https://doi.org/10.1134/S003809462106003410.1134/S0038094621060034.)https://doi.org/10.31857/S0320930X21060037
  5. Ефанов В.В., Долгополов В.П. Луна. От исследования к освоению (к 50-летию космических аппаратов “Луна-9” и “Луна-10”) // Вестн. НПО им. С.А. Лавочкина. 2016. Т. 4 (34). С. 3−8.
  6. Митрофанов И.Г., Зеленый Л.М. Об освоении Луны. Планы и ближайшие перспективы // Земля и Вселенная. 2019. № 4. С. 16–37.
  7. Митрофанов И.Г., Зеленый Л.М., Третьяков В.И., Калашников Д.В. Луна-25: первая полярная миссия на Луну // Астрон. вестн. 2021. Т. 55. № 6. С. 497–508. doi: (Mitrofanov I.G., Zelenyi L.M., Kalashnikov D.V. Luna-25: The first polar mission to the Moon // Sol. Syst. Res. 2021. V. 55. Iss. 6. 485–495. https://doi.org/10.1134/S003809462106009510.1134/S0038094621060095)https://doi.org/10.31857/S0320930X21060098
  8. Arthemis Plan. NASA’s Lunar Exploration Program Overview. September 2020. 73 p.
  9. Avdellidou C., Munaibari E., Larson R., Vaubaillon J., Delbo M., Hayne P., Wieczorek M., Sheward D., Cook A. Impacts on the Moon: Analysis methods and size distribution of impactors // Planet. and Space Sci. 2021. V. 200. id. 105201. P. 1–22.
  10. Avdellidou C., Vaubaillon J. Temperatures of lunar impact flashes: Mass and size distribution of small impactors hitting the Moon // Mon. Notic. Roy. Astron. Soc. 2019. V. 484. P. 5212–5222.
  11. Colaprete A., Schultz P., Heldmann J., Wooden D., Shirley M., and 12 co-authors. Detection of water in the LCROSS ejecta plume // Science. 2010. V. 330. P. 463–468.
  12. Dong C., Green J.L., Wang L., Draper D.S., Lingam M., Liu N., Boardsen S.A. Moon’s polar ice and hematite: A consequence of ancient lunar dynamo // 52nd Lunar and Planet. Sci. Conf. 2021. Abstract 1790.
  13. Gerasimov M.V., Dikov Yu.P., Yakovlev O.I., Wlotzka F. Experimental investigation of the role of water in impact vaporization chemistry // Deep-Sea Res. 2002. V. 49. P. 995–1009.
  14. Green R.O., Pieters C., Mouroulis P., Eastwood M., Boardman J., and 49 co-authors. The Moon Mineralogy Mapper (M3) imaging spectrometer for lunar science: Instrument description, calibration, on-orbit measurements, science data calibration and on-orbit validation // J. Geophys. Res. 2011. V. 116. E00G19.
  15. Head J., Pieters C., Scott D., Ivanov M., Krasilnikov S., and 8 co-authors. Geologic context for lunar south circumpolar region exploration: Implications for goals, site selection and operations strategy // Twelfth Moscow Solar System Symp. 2021. Abstract 12MS3-MN-03.
  16. Ivanov M.A., Hiesinger H., Abdrakhimov A.M., Basilevsky A.T., Head J.W., Pasckert J.-H., Bauch K., van der Bogert C.H., Gläser P., Kohanov A. Landing site selection for Luna-Glob mission in crater Boguslawsky // Planet. and Space Sci. 2015. V. 117. P. 45–63.
  17. Ivanov M.A., Abdrakhimov A.M., Basilevsky A.T., Demidov N.E., Guseva E.N., Head J.W., Hiesinger H., Kohanov A.A., Krasilnikov S.S. Geological characterization of the three high-priority landing sites for the Luna-Glob mission // Planet. and Space Sci. 2018. V. 162. P. 190–206.
  18. Le Feuvre M., Wieczorek M.A. Nonuniform cratering of the terrestrial planets // Icarus. 2008. V. 197. P. 291–306.
  19. Li S., Lucey P.G., Fraeman A.A., Poppe A.R., Sun V.Z., Hurley D.M., Schultz P.H. Widespread hematite at high latitudes on the Moon // Sci. Adv. 2020. V. 6. Iss. 36. doi: org/10.11.26/sciadv. aba1940
  20. Litvak M.L., Mitrofanov I.G., Sanin A., Malakhov A., Boynton W.V., and 15 co-authors. Global maps of lunar neutron fluxes from the LEND instrument // J. Geophys. Res. 2012. V. 117. E00H22.
  21. Lodders K., Fegley B., Jr. The Planetary Scientist’s Companion. New York. Oxford: Oxford Univ. Press, 1998. 371 p.
  22. McKay D.S., Heiken G., Basu A., Blanford G., Simon S., Reedy R., French B.M., Papike J. The lunar regolith // Lunar Source Book. Cambridge Univ. Press, 1991. P. 285–356.
  23. Melosh H.J. Planetary Surface Processes. Cambridge Univ. Press, 2011. 500 p.
  24. Stopar J.D., Jolliff B.L., Speyerer E.J., Asphaug E.I., Robinson M.S. Potential impact-induced water-solid reactions on the Moon // Planet. and Space Sci. 2018. V. 162. P. 157–169.
  25. Werner S.C., Ivanov B.A. Exogenic dynamics, cratering, and surface ages // Treatise on Geophysics. Second Edition. 2015. P. 327–365.
  26. Xu Lin, Pei Zhaoyu, Zou Yongliao, Wang Chi. China’s Lunar and Deep Space Exploration Program for the next decade (2020-2030) // Chinese J. Space Sci. 2020. V. 40. № 5. P. 615–617.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (194KB)
3.

Download (144KB)
4.

Download (116KB)
5.

Download (72KB)
6.

Download (92KB)
7.

Download (72KB)

Copyright (c) 2022 А.Т. Базилевский, В.А. Дорофеева, Юань Ли, ЛиГанг Фанг

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies