Impact Damage Influence Investigations on the Composite Skin-Stringer Joint Fatigue Characteristics Under Conditions of Vibroacoustic Loading

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The article presents the results of studying the fatigue characteristics of skin–stringer joints (T‑samples) made of a polymer composite material subjected to random vibroacoustic loading with a wide spectrum. Experimental data were analyzed to determine the damage initiation and growth mechanisms, as well as the criterion and failure mode for samples with and without impact damages. The effect of impact damage on the fatigue characteristics of the test samples at different impact energies and vibroacoustic loading levels is demonstrated. The main patterns of the influence of defects on the fatigue characteristics are revealed, which can be used in the future in creating computational models for damage development in structures made of the polymer composite material under vibroacoustic loading.

Sobre autores

S. Dubinskii

Central Aerohydrodynamic Institute, 140181, Zhukovsky, Russia

Email: stl.denisov@gmail.com
Россия, 140181, Жуковский, ул. Жуковского 1

F. Sevastyanov

Central Aerohydrodynamic Institute, 140181, Zhukovsky, Russia

Email: stl.denisov@gmail.com
Россия, 140181, Жуковский, ул. Жуковского 1

V. Kostenko

Central Aerohydrodynamic Institute, 140181, Zhukovsky, Russia

Email: stl.denisov@gmail.com
Россия, 140181, Жуковский, ул. Жуковского 1

S. Denisov

Central Aerohydrodynamic Institute, 140181, Zhukovsky, Russia

Autor responsável pela correspondência
Email: stl.denisov@gmail.com
Россия, 140181, Жуковский, ул. Жуковского 1

Bibliografia

  1. Clarkson B.L. Review of Sonic Fatigue Technology // NASA Contractor Report 4587. 1994.
  2. Нормы летной годности самолетов транспортной категории. Авиационные правила. Ч. 25 (АП-25).
  3. Thomson A.G.R. Acoustic fatigue design data. AGARDograph 162. 1972.
  4. ESDU Engineering Data: Acoustic Fatigue Series. V. 1. General, endurance under acoustic loading; V. 2. Loading actions, damping; V. 3. Stress/strain response of plate structures; V. 4. Natural frequencies of plate structures; V. 5. Natural frequencies of shell structures; V. 6. Natural frequencies of sandwich panels and box structures.
  5. Панкратов А.И., Врачев А.В., Григорьев А.А., Макаревич В.И., Мозжерова Н.А., Николаев В.С. Руководство для конструкторов по проектированию самолетов. Т. 3. Прочность самолета. Книга 4. Усталостная прочность. Ресурс и надежность планера самолета. Выпуск 9. Методика испытания авиационных конструкций при акустическом нагружении. ЦАГИ. Инв. № 1292. 1981.
  6. Xiao Y., White R.G., Aglietti G.S. An experimental characterization of the acoustic fatigue endurance of GLARE and comparison with that of CFRP // Composite Structures. 2005. V. 68. P. 455–470.
  7. Xiao Y., White R.G., Aglietti G.S. Comparison of structural response and fatigue endurance of aircraft flap-like box structures subjected to acoustic loading // J. Acoust. Soc. Am. 2005. V. 117. № 5. P. 2820–2834.
  8. Ajaj R.M., Allegri G., Isikveren A.T. Conceptual design and sizing of airframe panels according to safe-life acoustic fatigue criteria // Aeronautical J. 2011. V. 114. № 1162. P. 15–27.
  9. Денисов С.Л., Медведский А.Л. Отклик ортотропных пластин на широкополосное акустическое воздействие при различных видах взаимной спектральной плотности действующей нагрузки // Механика композиционных материалов. 2012. Т. 18. № 4. С. 527–543.
  10. ESDU 84027: Endurance of Fiber-Reinforced Composite, Laminated Structural Elements Subjected to Simulated Random Acoustic Loading. 16 (2014).
  11. Di Spirito G. Acoustic Fatigue Analysis Of Composite Outboard And Inboard Flap Of A Commercial Aircraft. Ph.D Thesis, University of Naples Federico II. July 2015.
  12. Uz C., Ata T.T. Acoustic fatigue and dynamic behavior of composite panels under acoustic excitation // Conf. Proc. Of The Society For Experimental Mechanics Series. Jan. 25–26, 2016. P. 219–229. Orlando, Florida.
  13. Dubinskii S.V., Safonov A.A. Composite-Friendly Approach to Certification of Advanced Materials and Fabrication Methods Used in Aviation Industry // J. Machinery Manufacture and Reliability. 2017. V. 46. № 5. P. 501–506. https://doi.org/10.3103/s1052618817050041
  14. Дубинский С.В., Севастьянов Ф.С., Голубев А.Ю., Денисов С.Л., Костенко В.М., Жаренов И.А. Расчетно-экспериментальное исследование влияния виброакустических нагрузок на прочность композитного соединения // Акуст. журн. 2019. Т. 65. № 4. С. 460–470.
  15. Langley R.S. On the Forced Response of One-Dimensional Periodic Structures: Vibration Localization by Damping // J. Sound Vib. 1994. V. 178. P. 411–428.
  16. Langley R.S. A Dynamic Stiffness Technique for the Vibration Analysis of Stiffened Shell Structures // J. Sound Vib. 1992. V. 156. P. 521–540.
  17. Селихов А.Ф., Сеник В.Я., Хлебникова И.Г. Методика статистического анализа характеристик выносливости, прочности, живучести планера самолета. Руководство для конструкторов по проектированию самолетов. Т. III. Книга 4. Вып. 11. Издательский отдел ЦАГИ. 1979. 72 с.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (348KB)
3.

Baixar (723KB)
4.

Baixar (438KB)
5.

Baixar (797KB)
6.

Baixar (660KB)
7.

Baixar (347KB)
8.

Baixar (1015KB)
9.

Baixar (553KB)

Declaração de direitos autorais © С.В. Дубинский, Ф.С. Севастьянов, В.М. Костенко, С.Л. Денисов, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies