Regulation by Endothelial Cells of the Corneal Matrix Osmotic Balance
- Autores: Baturina G.S.1,2, Katkova L.E.1,2, Iskakov I.A.3, Solenov E.I.1,4
-
Afiliações:
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (ICG SB RAS)
- Novosibirsk State University (NSU)
- S.N. Fedorov Eye Microsurgery Clinic (Novosibirk Department)
- Novosibirsk State Technical University (NSTU)
- Edição: Volume 56, Nº 3 (2025)
- Páginas: 97-108
- Seção: Articles
- URL: https://journals.rcsi.science/0301-1798/article/view/328236
- DOI: https://doi.org/10.7868/S3034611825030061
- ID: 328236
Citar
Resumo
Palavras-chave
Sobre autores
G. Baturina
Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (ICG SB RAS); Novosibirsk State University (NSU)
Email: baturina@yandex.ru
Novosibirsk, 630090 Russia; Novosibirsk, 630090 Russia
L. Katkova
Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (ICG SB RAS); Novosibirsk State University (NSU)
Email: ile@academposter.ru
Novosibirsk, 630090 Russia; Novosibirsk, 630090 Russia
I. Iskakov
S.N. Fedorov Eye Microsurgery Clinic (Novosibirk Department)
Email: i.iskakov@mntk.nsk.ru
Novosibirsk, 630096 Russia
E. Solenov
Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (ICG SB RAS); Novosibirsk State Technical University (NSTU)
Email: eugsol@bionet.nsc.ru
Novosibirsk, 630090 Russia; Novosibirsk, 630087 Russia
Bibliografia
- Батурина Г.С., Каткова Л.Е., Пальчикова И.Г. и др. Митохондриальный антиоксидант SkQ1 повышает эффективность гипотермической консервации роговицы // Биохимия. 2021. Т. 86. № 3. С. 443–450. 10.31857/S032097252103012X' target='_blank'>https://doi: 10.31857/S032097252103012X
- Кузеина И.М., Каткова Л.Е., Батурина Г.С. и др. Нарушения регуляции объема клеток эндотелия роговицы при кератоконусе // Биологические мембраны. 2024. Т. 41. № 3. С. 211–218. 10.31857/S0233475524030042' target='_blank'>https://doi: 10.31857/S0233475524030042
- Наточин Ю.В. Физиологии почки и водно- солевого гомеостаза человека: новые проблемы // Физиология человека. 2021. Т. 47. № 4. С. 103–114. https://doi.org/10.31857/S0131164621040111
- Салихов И.Г., Агишева К.Н. Перекисное окисление липидов и его значение в патологии внутренних органов // Казанский медицинский журнал. 1986. Т. 67. № 3. C. 200–203. 10.17816/kazmj66785' target='_blank'>https://doi: 10.17816/kazmj66785
- Anney P., Charpentier P., Proulx S. Influence of Intraocular Pressure on the Expression and Activity of Sodium – Potassium Pumps in the Corneal Endothelium // Int. J. Mol. Sci. 2024. V. 25. P. 10227. https://doi.org/10.3390/ijms251810227
- Araie M., Hamano K., Eguchi S. et al. Effect of calcium ion concentration on the permeability of the corneal endothelium // Invest. Ophthalmol. Vis. Sci. 1990. V. 31. № 10. P. 2191–2193.
- Barry P.A., Petroll W.M., Andrews P.M. et al. The spatial organization of corneal endothelial cytoskeletal proteins and their relationship to the apical junctional complex // Investig. Ophthalmol. Vis. Sci. 1995. V. 36. P. 1115–1124.
- Bazzoni G. The JAM family of junctional adhesion molecules // Curr. Opin. Cell. Biol. 2003. V. 15. № 5. P. 525–530. https://doi: 10.1016/s0955-0674(03)00104-2
- Bhosale G., Sharpe J.A., Sundier S.Y. et al. Calcium signaling as a mediator of cell energy demand and a trigger to cell death // Ann. N. Y Acad. Sci. 2015. V. 1350. P. 107–116. https://doi: 10.1111/nyas.12885.
- Bochkov V.N., Oskolkova O.V., Birukov K.G., et al. Generation and biological activities of oxidized phospholipids // Antioxid. Redox. Signal. 2010. V. 12. № 8. P. 1009–1059. https://doi: 10.1089/ars.2009.2597
- Bonanno J.A. Identity and regulation of ion transport mechanisms in the corneal endothelium // Prog. Retin. Eye Res. 2003. V. 22. № 1. P. 69–94. https://doi: 10.1016/s1350-9462(02)00059-9
- Bonanno J.A. Molecular Mechanisms Underlying the Corneal Endothelial Pump // Exp. Eye Res. 2012. V. 95. № 1. P. 2–7. 10.1016/j.exer.2011.06.004' target='_blank'>https://doi: 10.1016/j.exer.2011.06.004
- Bonanno J.A., Guan Y., Jelamskii S. et al. Apical and basolateral CO2-HCO3– permeability in cultured bovine corneal endothelial cells // Am J. Physiol. 1999. V. 277. № 3. P. C545–53. https://doi: 10.1152/ajpcell.1999.277.3.C545.
- Bonanno J.A., Shyam R., Choi M. et al. The H+ Transporter SLC4A11: Roles in Metabolism, Oxidative Stress and Mitochondrial Uncoupling // Cells. 2022. V. 11. № 2. P. 197. https://doi: 10.3390/cells11020197
- Bourne W.M. Biology of the corneal endothelium in health and disease // Eye (Lond). 2003. V. 17. P. 912–918. https://doi: 10.1038/sj.eye.6700559 10
- Carlson K.H., Bourne W.M., McLaren J.W. et al. Variations in human corneal endothelial cell morphology and permeability to fluorescein with age // Exp. Eye Res. 1988. V. 47. P. 27–41. https://doi: 10.1016/0014-4835(88)90021-8
- Casas-González P., Ruiz-Martínez A., García-Sáinz J.A. Lysophosphatidic acid induces alpha1B-adrenergic receptor phosphorylation through G beta gamma, phosphoinositide 3-kinase, protein kinase C and epidermal growth factor receptor transactivation // Biochim. Biophys. Acta. 2003. V. 1633. № 2. P. 75–83.
- Chifflet S., Justet C., Hernández J.A. et al. Early and late calcium waves during wound healing in corneal endothelial cells // Wound. Repair. Regen. 2012. V. 20. P. 28–37. https://doi: 10.1111/j.1524-475X.2011.00749.x
- Chmiel T.A., Gardel M.L. Confluence and tight junction dependence of volume regulation in epithelial tissue // Mol. Biol. Cell. 2022. V. 33. № 11. ar98. https://doi: 10.1091/mbc.E22-03-0073.
- Contreras R.G., Torres-Carrillo A., Flores-Maldonado C. et al. Na+/K+-ATPase: More than an Electrogenic Pump // Int. J. Mol. Sci. 2024. V. 25. № 11. P. 6122. https://doi: 10.3390/ijms25116122
- Delpire E., Gagnon K.B. Water Homeostasis and Cell Volume Maintenance and Regulation // Curr. Top. Membr. 2018. V. 81. P. 3–52. https://doi: 10.1016/bs.ctm.2018.08.001
- Dolmetsch R.E., Xu K., Lewis R.S. Calcium oscillations increase the efficiency and specificity of gene expression // Nature. 1998. V. 392. P. 933–936. https://doi: 10.1038/31960
- Duan S., Li Y., Zhang Y. et al. The Response of Corneal Endothelial Cells to Shear Stress in an In Vitro Flow Model / J. Ophthalmol. 2021. 9217866. https://doi: 10.1155/2021/9217866
- Fanning A.S., Jameson B.J., Jesaitis L.A. et al. The tight junction protein ZO-1 establishes a link between the transmembrane protein occludin and the actin cytoskeleton // J. Biol. Chem. 1998. V. 273. P. 29745–29753. https://doi: 10.1074/jbc.273.45.29745
- Furuse M., Hata M., Furuse K. et al. Claudin-based tight junctions are crucial for the mammalian epidermal barrier: a lesson from claudin-1-deficient mice // J. Cell. Biol. 2002. V. 156. P. 1099–1111. https://doi: 10.1083/jcb.200110122
- Hartsock A., Nelson W.J. Adherens and tight junctions: Structure, function and connections to the actin cytoskeleton // Biochim. Biophys. Acta. 2008. V. 1778. P. 660–669. https://doi: 10.1016/j.bbamem.2007.07.012
- Hatou S., Sayano T., Higa K. et al. Transplantation of iPSC-derived corneal endothelial substitutes in a monkey corneal edema model // Stem. Cell. Res. 2021. V. 55. 102497. https://doi: 10.1016/j.scr.2021.102497
- Hatou S., Shimmura S. Advances in corneal regenerative medicine with iPS cells // Jpn. J. Ophthalmol. 2023. V. 67. № 5. P. 541–545. https://doi: 10.1007/s10384-023-01015-5
- Higashi T., Tokuda S., Kitajiri S. et al. Analysis of the ‘angulin’ proteins LSR, ILDR1 and ILDR2 — tricellulin recruitment, epithelial barrier function and implication in deafness pathogenesis // J. Cell. Sci. 2013. V. 126. P. 966–977. https://doi: 10.1242/jcs.116442
- Hogan M.J., Alvarado J.A., Weddel J.E. Histology of the Human Eye: An Atlas and Text-Book. W.B. Saunders; Philadelphia, PA, USA: 1971. p. 687.
- Imafuku K., Iwata H., Natsuga K. et al. Zonula occludens-1 distribution and barrier functions are affected by epithelial proliferation and turnover rates // Cell. Prolif. 2023. V. 56. № 9. e13441. https://doi: 10.1111/cpr.13441
- Inagaki E., Hatou S., Higa K. et al. Skin-Derived Precursors as a Source of Progenitors for Corneal Endothelial Regeneration // Stem. Cells Transl. Med. 2017. V. 6. № 3. P. 788–798. https://doi: 10.1002/sctm.16-0162
- Iwabuchi S., Kawahara K., Makisaka K. et al. Photolytic flash-induced intercellular calcium waves using caged calcium ionophore in cultured astrocytes from newborn rats // Exp. Brain Res. 2002. V. 146. P. 103–116. https://doi: 10.1007/s00221-002-1149-y
- Johnson Z.I., Shapiro I.M., Risbud M.V. Extracellular osmolarity regulates matrix homeostasis in the intervertebral disc and articular cartilage: evolving role of TonEBP // Matrix. Biol. 2014. V. 40. P. 10–16.
- Joyce N.C., Meklir B., Joyce S.J. et al. Cell cycle protein expression and proliferative status in human corneal cells // Invest. Ophthalmol. Vis. Sci. 1996. V. 37. № 4. P. 645–55.
- Justet C., Hernández J.A., Chifflet S. Roles of early events in the modifications undergone by bovine corneal endothelial cells during wound healing // Mol. Cell Biochem. 2023. V. 478. P. 89–102. https://doi: 10.1007/s11010-022-04495-0
- Kao L., Azimov R., Shao X.M. et al. Multifunc-tional ion transport properties of human SLC4A11: Сomparison of the SLC4A11-B and SLC4A11-C variants // Am. J. Physiol. Cell. Physiol. 2016. V. 311. P. C. 820–C830. https://doi: 10.1152/ajpcell.00233.2016
- Klintworth G.K. Corneal dystrophies // Orphanet. J. Rare. Dis. 2009. V. 4. P. 7. https://doi: 10.1186/1750-1172-4-7
- Klyce S.D. 12. Endothelial pump and barrier function // Exp Eye Res. 2020. V. 198. 108068. https://doi: 10.1016/j.exer.2020
- Laing R.A., Sanstrom M.M., Berrospi A.R. et al. Changes in the corneal endothelium as a function of age // Exp. Eye. Res. 1976. V. 22. № 6. P. 587–594. https://doi: 10.1016/0014-4835(76)90003-8
- Lang F., Busch G.L., Ritter M. et al. Functional significance of cell volume regulatory mecha- nisms // Physiol. Rev. 1998. V. 78. № 1. P. 247–306. https://doi: 10.1152/physrev.1998.78.1.247
- Leybaert L., Sanderson M.J. Intercellular Ca2+ waves: Mechanisms and function // Physiol. Rev. 2012. V. 92. P. 1359–1392. https://doi: 10.1152/physrev.00029.2011
- Lopina O.D., Fedorov D.A., Sidorenko S.V. et al. Sodium Ions as Regulators of Transcription in Mammalian Cells // Biochem. Mosc. 2022. V. 87. P. 789–799.
- Maurice D.M. The location of the fluid pump in the cornea // J. Physiol. 1972. V. 221. № 1. P. 43–54. https://doi: 10.1113/jphysiol.1972.sp009737
- Maycock N.J., Marshall J. Genomics of corneal wound healing: a review of the literature // Acta Ophthalmol. 2014. V. 92. № 3. e170–84. https://doi: 10.1111/aos.12227
- Melnyk S., Bollag W.B. Aquaporins in the Cor-nea // Int. J. Mol. Sci. 2024. V. 25. № 7. 3748. https://doi: 10.3390/ijms25073748
- Mergler S., Pleyer U. The human corneal endothelium: new insights into electrophysiology and ion channels // Prog. Retin. Eye Res. 2007. V. 26. № 4. P. 359–378. https://doi: 10.1016/j.preteyeres.2007.02.001
- Millard C., Kaufman P.L. Aqueous humor: Secretion and dynamics // In: Tasman W.J.E., editor. Duane’s Foundations of Clinical Ophthalmology. Lippincott-Raven; Philadelphia, PA, USA: 1995.
- Model M.A. Studying cell volume beyond cell volume // Curr. Top. Membr. 2021. V. 88. P. 165–188. https://doi: 10.1016/bs.ctm.2021.08.001
- Navel V., Malecaze J., Pereira B. et al. Oxidative and antioxidative stress markers in keratoconus: A systematic review and meta-analysis // Acta. Ophthalmol. 2021. V. 99. P. e777–e794. https://doi: 10.1111/aos.14714
- Nehrke K. H(OH), H(OH), H(OH): a holiday perspective. Focus on “Mouse Slc4a11 expressed in Xenopus oocytes is an ideally selective H+/OH– conductance pathway that is stimulated by rises in intracellular and extracellular pH” // Am. J. Physiol. Cell. Physiol. 2016. V. 311. № 6. P. C942–C944. https://doi: 10.1152/ajpcell.00309.2016
- Nielsen N.V., Eriksen J.S., Olsen T. Corneal edema as a result of ischemic endothelial damage: a case report // Ann. Ophthalmol. 1982. V. 14. № 3. P. 276–278.
- Kang E.Y., Liu P.K., Wen Y.T. et al. Role of Oxidative Stress in Ocular Diseases Associated with Retinal Ganglion Cells Degeneration // Antioxidants. 2021. V. 10. P. 1948. https://doi: 10.3390/antiox10121948
- Ng X.Y., Peh G.S.L., Yam G.H. et al. Corneal Endothelial-like Cells Derived from Induced Pluripotent Stem Cells for Cell Therapy // Int. J. Mol. Sci. 2023. V. 24. № 15. 12433. https://doi: 10.3390/ijms241512433.
- Ogando D.G., Bonanno J.A. RNA sequencing uncovers alterations in corneal endothelial metabolism, pump and barrier functions of Slc4a11 KO mice // Exp. Eye Res. 2022. V. 214. 108884. https://doi: 10.1016/j.exer.2021.108884
- Ogando D.G., Choi M., Shyam R. et al. Ammonia sensitive SLC4A11 mitochondrial uncoupling reduces glutamine induced oxidative stress // Redox. Biol. 2019. V. 26. 101260. https://doi: 10.1016/j.redox.2019.101260
- Ogando D.G., Kim E.T., Li S. et al. Corneal Edema in Inducible Slc4a11 Knockout Is Initiated by Mitochondrial Superoxide Induced Src Kinase Activation // Cells. 2023. V. 12. № 11. 1528. https://doi: 10.3390/cells12111528
- Okumura N., Sakamoto Y., Fujii K. et al. Rho kinase inhibitor enables cell-based therapy for corneal endothelial dysfunction // Sci. Rep. 2016. V. 6. 26113. https://doi: 10.1038/srep26113
- Otani T., Furuse M. Tight Junction Structure and Function Revisited // Trends Cell. Biol. 2020. V. 30. № 10. P. 805–817. https://doi: 10.1016/j.tcb.2020.08.004
- Paemeleire K., Martin P.E., Coleman S.L. et al. Intercellular calcium waves in HeLa cells expressing GFP-labeled connexin 43, 32, or 26 // Mol. Biol. Cell. 2000. V. 11. P. 1815–1827.
- Peh G.S., Beuerman R.W., Colman A. et al. Human corneal endothelial cell expansion for corneal endothelium transplantation: An overview // Transplantation. 2011. V. 91. P. 811–819. https://doi: 10.1097/TP.0b013e3182111f01
- Poulsen J.H., Fischer H., Illek B. et al. Bicarbonate conductance and ph regulatory capability of cystic fibrosis transmembrane conductance regulator // Proc Natl Acad Sci USA. 1994. V. 91. № 12. P. 5340-4. https://doi: 10.1073/pnas.91.12.5340
- Price M.O., Mehta J.S., Jurkunas U.V. Corneal endothelial dysfunction: Evolving understanding and treatment options // Prog. Retin. Eye Res. 2021. V. 82. 100904. 10.1016/j.preteyeres.2020.100904' target='_blank'>https://doi: 10.1016/j.preteyeres.2020.100904
- Ramachandran C., Srinivas S.P. Formation and disassembly of adherens and tight junctions in the corneal endothelium: Regulation by actomyosin contraction // Investig. Ophthalmol. Vis. Sci. 2010. V. 51. P. 2139–2148. https://doi: 10.1167/iovs.09-4421
- Riley M.V., Winkler B.S., Peters M.I. et al. Relationship between fluid transport and in situ inhibition of Na(+)-K+ adenosine triphosphatase in corneal endothelium // Invest. Ophthalmol. Vis. Sci. 1994. V. 35. № 2. P. 560–567.
- Riley M.V., Winkler B.S., Starnes C.A. et al. Regulation of corneal endothelial barrier function by adenosine, cyclic AMP, and protein kinases // Invest. Ophthalmol. Vis. Sci. 1998. V. 39. № 11. P. 2076–2084.
- Ruiz-Martínez A., Vázquez-Juárez E., Ramos-Mandujano G. et al. Permissive effect of EGFR-activated pathways on RVI and their anti-apoptotic effect in hypertonicity-exposed mIMCD3 cells // Biosci. Rep. 2011. V. 31. № 6. P. 489–97. https://doi: 10.1042/BSR20110024
- Saccà S.C., Cutolo C.A., Ferrari D., Corazza P., Traverso C.E. The Eye, Oxidative Damage and Polyunsaturated Fatty Acids // Nutrients. 2018. V. 10. P. 668. https://doi: 10.3390/nu10060668
- Sies H., Berndt C., Jones D.P. Oxidative Stress // Annu. Rev. Biochem. 2017. V. 86. P. 715–748. https://doi: 10.1146/annurev-biochem-061516-045037
- Shankardas J., Patil R.V., Vishwanatha J.K. Effect of down-regulation of aquaporins in human corneal endothelial and epithelial cell lines // Mol. Vis. 2010. V. 16. P. 1538–48.
- Skou J.C., Esmann M. The Na, K-ATPase // J. Bioenerg. Biomembr. 1992. V. 24. P. 249–261. https://doi: 10.1007/BF00768846
- So S., Park Y., Kang S.S. et al. Therapeutic Potency of Induced Pluripotent Stem-Cell-Derived Corneal Endothelial-like Cells for Corneal Endothelial Dysfunction // Int. J. Mol. Sci. 2022. V. 24. № 1. P. 701. https://doi: 10.3390/ijms24010701
- Stern M.E., Edelhauser H.F., Pederson H.J. et al. Effects of ionophores X537a and A23187 and calcium-free medium on corneal endothelial morphology // Investig. Ophthalmol. Vis. Sci. 1981. V. 20. P. 497–508.
- Tajima K., Okada M., Kudo R. et al. Primary cell culture of canine corneal endothelial cells // Vet. Ophthalmol. 2021. V. 24. № 5. P. 447–454. https://doi: 10.1111/vop.12924
- Tratnig-Frankl M., Luft N., Magistro G. et al. Hepatocyte Growth Factor Modulates Corneal Endothelial Wound Healing In Vitro // Int. J. Mol. Sci. 2024. V. 2. P. 9382. https://doi.org/10.3390/ijms25179382
- Turner J.R. ‘Putting the squeeze’ on the tight junction: Understanding cytoskeletal regulation // Semin. Cell Dev. Biol. 2000. V. 11. P. 301–308. https://doi: 10.1006/scdb.2000.0180
- Van den Bogerd B., Dhubhghaill S.N., Koppen C. et al. A review of the evidence for in vivo corneal endothelial regeneration // Surv. Ophthalmol. 2018. V. 63. № 2. P. 149–165. https:// doi: 10.1016/j.survophthal.2017.07.004
- Vercammen H., Miron A., Oellerich S. et al. Corneal endothelial wound healing: understanding the regenerative capacity of the innermost layer of the cornea // Transl. Res. 2022. V. 248. P. 111–127. https:// doi: 10.1016/j.trsl.2022.05.003
- Verkman A.S. Role of aquaporin water channels in eye function // Exp. Eye. Res. 2003. V. 76. № 2. P. 137–43. https://doi: 10.1016/s0014-4835(02)00303-2
- Verkman A.S., Ruiz-Ederra J., Levin M.H. Functions of aquaporins in the eye // Prog. Retin. Eye. Res. 2008. V. 27. № 4. P. 420–33. https://doi.org/10.1016/j.preteyeres.2008.04.001.
- Vallabh N.A., Romano V., Willoughby C.E. Mitochondrial dysfunction and oxidative stress in corneal disease // Mitochondrion. 2017. V. 36. P. 103–113. https://doi: 10.1016/j.mito.2017.05.009.
- Vij N., Sharma A., Thakkar M. et al. PDGF-driven proliferation, migration, and IL8 chemokine secretion in human corneal fibroblasts involve JAK2-STAT3 signaling pathway // Mol. Vis. 2008. V. 14. P. 1020–1027.
- Whitcher J.P., Srinivasan M., Upadhyay M.P. Corneal blindness: a global perspective // Bull. W. H. O. 2001. V. 79. P. 214–221.
- Wilson S.E., Mohan R.R., Mohan R.R. et al. The corneal wound healing response: Cytokine-mediated interaction of the epithelium, stroma, and inflammatory cells // Prog. Retin. Eye Res. 2001. V. 20. P. 625–637. https://doi: 10.1016/s1350-9462(01)00008-8
- Wong E.N., Mehta J.S. Cell therapy in corneal endothelial disease // Curr. Opin. Ophthalmol. 2022. V. 33. № 4. P. 275–281. https:// doi: 10.1097/ICU.0000000000000853
- Woo S.K., Lee S.D., Kwon H.M. TonEBP transcriptional activator in the cellular response to increased osmolality // Pflugers. Arch. 2002. V. 444. № 5. P. 579–585. https://doi: 10.1007/s00424-002-0849-2
- Zarogiannis S.G., Ilyaskin A.V., Baturina G.S. et al. Regulatory volume decrease of rat kidney principal cells after successive hypo-osmotic shocks // Math. Biosci. 2013. V. 244. № 2. P. 176–87. https://doi: 10.1016/j.mbs.2013.05.007
- Zhao E., Gao K., Xiong J. et al. The roles of FXYD family members in ovarian cancer: an integrated analysis by mining TCGA and GEO databases and functional validations // J. Cancer Res. Clin. Oncol. 2023. V. 149. P. 17269–17284. https://doi: 10.1007/s00432-023-05445-z
- Zihni C., Mills C., Matter K. et al. Tight junctions: From simple barriers to multifunctional molecular gates // Nat. Rev. Mol. Cell. Biol. 2016. V. 17. P. 564–580. https://doi: 10.1038/nrm.2016.80
- Zinflou C., Rochette P.J. Ultraviolet A-induced oxidation in cornea: Characterization of the early oxidation-related events // Free Radic. Biol. Med. 2017. V. 108. P. 118–128. https://doi: 10.1016/j.freeradbiomed.2017.03.022.
Arquivos suplementares
