Analysis of the relationship of various pathologies with the degree of multifractality of electrical activity of the brain

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The review is devoted to the analysis of the relationship between dynamic changes in patterns of electrical activity of the brain during the occurrence of mental disorders in the form of paranoid schizophrenia and depression and in patterns of brain activity in cardiovascular pathology associated with permanent atrial fibrillation, as well as indicators of multifractality of the studied patterns. To assess these indicators of electroencephalographic patterns, we describe a method of multifractal analysis based on the search for maxima of wavelet coefficient modules, and to isolate the fractal component of the signal in the power spectrum we describe a method of autospectral analysis with irregular resampling. It has been shown that the main differences between the multifractal properties of the electrical activity of the brain in health and in pathology are the different widths of the multifractality spectrum and its location, associated with different types of sequential pattern values. In this regard, the multifractality indicators can serve as informative markers of neuronal disorders and can be included in a set of tests for studying various pathologies.

Толық мәтін

Рұқсат жабық

Авторлар туралы

O. Dick

Pavlov Institute of Physiology of Russian Academy of Science

Хат алмасуға жауапты Автор.
Email: dickviola@gmail.com
Ресей, 199034, St. Petersburg, nab. Makarova, 6

Әдебиет тізімі

  1. Дик О.Е. Анализ степени мультифрактальности различных компонент электроэнцефалограмм при сердечно-сосудистой патологии // Интегративная физиология. 2022. Т. 3, № 4. С. 463–473.
  2. Дик О.Е., Ноздрачев А.Д. Механизмы изменения динамической сложности паттернов физиологических сигналов: научная монография. СПб.: Изд-во Санкт-Петербургского университета, 2019. 200 с. ISBN 978-5-288.
  3. Acharya UR, Faust O, Kannathal N, Chua T, Laxminarayan S. Affiliations expand. Non-linear analysis of EEG signals at various sleep stages // Comput. Methods Programs Biomed. 2005. V. 80. P. 37–45.
  4. Alamian G., Lajnef T., Pascarella A., et al. Altered brain criticality in schizophrenia: new insights from magnetoencephalography // Front. Neural Circuits. 2022. V. 16. P. 167–178. https://doi.org/10.3389/fncir.2022.630621
  5. Arneodo A, Bacry E, Muzy J.F. The thermodynamics of fractals revisited with wavelets // Physica A. 1995. V. 213. P. 232–275.
  6. Bachmann M., Suhhova A., Lass J., et al. Detrended fluctuation analysis of EEG in depression // In: Roa Romero, L. (eds) XIII Mediterranean conference on medical and biological engineering and computing. 2013. IFMBE Proc. 41. Springer, Cham.
  7. Bacry E, Muzy JF, Arneodo A. Singularity spectrum of fractal signals: exact results // J. Statist. Phys. 1993. V. 70. P. 635–674.
  8. Begic D., Hotujac L., Jokic-Begic N. Quantitative EEG in 'positive' and 'negative' schizophrenia // Acta Psychiatrica Scandinavica. 2000. V. 101. P. 307–311.
  9. Dick O.E. From healthy to pathology through a fall in dynamical complexity of involuntary oscillations of the human // Neurocomputing. 2017. V. 243. P. 142–154.
  10. Dick O.E., Mochovikova I.A. Multifractal and wavelet analysis of epileptic seizures // In: Skiadas C.H., Dimotikalis I., Skiadas C, eds. Chaos Theory: Modeling, Simulation and Applications, World Scientific Publishing. 2011. P. 159–166.
  11. Dick O.E., Svyatogor I.A. Potentialities of the wavelet and multifractal techniques to evaluate changes in the functional state of the human brain // Neurocomputing. 2012. V. 82. P. 207–215.
  12. Dick O.E., Murav’eva S.V., Lebedev V.S., Shelepin Yu.E. Fractal structure of brain electrical activity of patients with mental disoders // Front. Physiol. 2022. V. 13. P. 1–13.
  13. Eke A., Hermann P., Kocsis L., Kozak L.R. Fractal characterization of complexity in temporal physiological signals // Physiol. Meas. 2002. V. 23. P. 1–38.
  14. Eke A., Herman P., Bassingthwaighte J.B, et al. Physiological time series: distinguish fractal noises from motions // Eur. J. Physiol. 2000. V. 439. P. 403–414.
  15. Harris A., Melkonian D., Williams L., Gordon E. Dynamic spectral analysis findings in first episode and chronic schizophrenia // Int. J. Neuroscience. 2006. V. 116. P. 223–246.
  16. Harris A.W.F., Bahramali H., Slewa-Younan S. et al. The topography of quantified electroencephalography in three syndromes of schizophrenia // Int. J. Neuroscience. 2001. V. 107. P. 265–278.
  17. Ihlen E.A.F. Introduction to multifractal detrended fluctuation analysis in Matlab // Front. Physiol. 2012. V. 3. P. 141–159.
  18. Ihlen E.A.F., Vereijken B. Interaction dominant dynamics in human cognition: beyond 1/fα fluctuations // J. Exp. Psychol. Gen. 2010. V. 139. P. 436–463.
  19. Ivanov PC, Amaral LA, Goldberger AL, et al. Multifractality in human heartbeat dynamics // Nature. 1999. V. 399. P. 461–465.
  20. John J.P., Rangaswamy M., Thennarasu K., et al. EEG power spectra differentiate positive and negative subgroups in neuroleptic-naive schizophrenia patients // J. Neuropsych. Clin. Neurosci. 2009. V. 21. P. 160–172.
  21. Knott V., Labelle A., Jones B., Mahoney C. Quantitative EEG in schizophrenia and in response to acute and chronic clozapine treatment // Schizophrenia Res. 2001. V. 50. P. 41–53.
  22. Kwok C.S., Loke Y.K., Hale R. et al. Atrial fibrillation and incidence of dementia: a systematic review and meta-analysis // Neurology. 2011. V. 76. P. 914–922.
  23. Lee Y.J., Huang S.Y., Lin C.P. et al. Alteration of power law scaling of spontaneous brain activity in schizophrenia // Schizophr. Res. 2021. V. 238. P. 10–19.
  24. Mielke M.M., Rosenberg P.B., Tschanz J. et al. Vascular factors predict rate of progression in Alzheimer disease // Neurology. 2007. V. 69. P. 1850–1858.
  25. Mukli P., Nagy Z., Racz F.S., Herman P., Eke A. Impact of healthy aging on multifractal hemodynamic fluctuations in the human prefrontal cortex // Front. Physiol. 2018. V. 9. P. 1072–1085.
  26. Muzy J.F., Bacry E., Arneodo A. Multifractal formalism for fractal signals: the structure-function approach versus the wavelet-transform modulus-maxima method // Phys. Rev. 1993. V. 47. P. 875–884.
  27. Nikulin V.V., Jönsson E.G., Brismar T. Attenuation of long-range temporal correlations in the amplitude dynamics of alpha and beta neuronal oscillations in patients with schizophrenia // NeuroImage. 2012. V. 61. P. 162–169.
  28. Nurujjaman M., Narayanan R., Iyengar S. Comparative study of nonlinear properties of EEG signals of normal persons and epileptic patients // Nonlinear Biomed. Physics. 2009. V. 3. P. 6–12.
  29. Pavlov A.N., Anishenko V.C. Multifractal analysis of complex signals // Phys.-Uspekhi. 2007. V. 177. P. 859–876.
  30. Popivanov D., Stomonyakov V., Minchev Z. et al. Multifractality of decomposed EEG during imaginary and real visual-motor tracking // Biol. Cyber. 2006. V. 94. P. 149–156.
  31. Qianli M.A., Xinba N., Jun W., Bian C. A new measure to characterize multifractality of sleep electroencephalogram // Chinese Science Bulletin. 2006. V. 51. P. 3059–3064.
  32. Racz F.S., Stylianou O., Mukli P., Eke A. Multifractal and entropy-based analysis of delta band neural activity reveals altered functional connectivity dynamics in schizophrenia // Front. Syst. Neurosci. 2020. V. 14. P. 49–53.
  33. Racz F.S, Farkas K., Stylianou O., et al. Separating scale-free and oscillatory components of neuralactivity in schizophrenia // Brain Behav. 2021. V. 11. P. 47–58.
  34. Ranlund S., Nottage J., Shaikh M., et al. Resting EEG in psychosis and at-risk populations -A possible endophenotype? // Schizophrenia Research. 2014. V. 153. P. 96–102.
  35. Santangeli P., Di Biase L., Bai Rong et al. Atrial fibrillation and the risk of incident dementia: a meta-analysis // Heart Rhythm. 2012. V. 9. P. 1761–1780.
  36. Sassi R., Signorini M.G., Cerutti S. Multifractality and heart rate variability // Chaos. 2009. V. 19. P. 028507-1-5.
  37. Scafetta N., Moon R.E., West B.J. Fractal response of physiological signals to stress conditions, environmental changes, and neurodegenerative diseases // Complexity. 2007. V. 12. P. 12–17.
  38. Scafetta N., Marchi D., West B.J. Understanding the complexity of human gait dynamics // Chaos. 2009. V. 19. P. 026108-1-10.
  39. Slezin V., Korsakova E.A., Dytjatkovsky M.A. et al. Multifractal analysis as an aid in the diagnostics of mental disorders // Nordic J. Psych. 2007. V. 61. P. 339–342.
  40. Song I.H., Lee D.S. Fluctuation dynamics in electroencephalogram time series // In: Mira J., Alvarez J.R., eds. IWINAC: Springer-Verlag Berlin Heidelberg. 2005. P..281–304.
  41. Suckling J., Wink A.M., Bernard F.A., Barnes A., Bullmore E. Endogenous multifractal brain dynamics are modulated by age, cholinergic blockade and cognitive performance // J. Neurosci. Methods. 2008. V. 17. P.2 92–300.
  42. Takahashi T., Kosaka H., Murata T., et al. Application of a multifractal analysis to study brain white matter abnormalities of schizophrenia on T2-weighted magnetic resonance imaging // Psychiatry Res. Neuroimaging. 2009. V. 171. P. 177–188.
  43. Tislerova B., Brunovsky M., Horacek J. et al. LORETA functional imaging in antipsychotic-naive and olanzapine-, clozapine-and risperidone-treated patients with schizophrenia // Neuropsychobiology. 2008. V. 58. P. 1–10.
  44. Wang W., Zhang S., Ning X. A significant increase of multifractal behavior of schizophrenia's EEG // Chinese Biomed. Engin. Trans. 2004. V. 23. P. 511–515.
  45. Watters P.A., Martin F. A method for estimating long-range power law correlations from the electroencephalogram // Biol. Psychol. 2004. V. 66. P..79–89.
  46. Wen H.G., Liu Z.M. Separating fractal and oscillatory components in the power spectrum of neurophysiological signa // Brain Topography. 2016. V. 29. P. 13–26.
  47. Wend H., Abry P. Multifractality tests using bootstrapped wavelet leaders // IEEE Trans. Signal Process. 2007. V. 55. P. 4811–4820.
  48. Wink A.M., Bullmore E., Barnes A., Bernard F., Suckling J. Monofractal and multifractal dynamics of low frequency endognous brain oscillations in functional MRI // Human Brain Mapping. 2008. V. 29. P. 791–801.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Examples of power spectra for the EEG of a healthy person (a, g, g), a patient with schizophrenia (bde) and depression (b, e, k) (O2 lead). Initial (mixed) power spectra (a–b), averaged mixed spectra (blue curves) and fractal components of the spectra (red curves) (g–e), vibrational spectra (w–k) (data from [12]).

Жүктеу (1MB)
3. Fig. 2. Dependencies h(q) (a) and singularity spectra (b) for frontal leads (F3, Fz, F4) (blue curves) and for central (C3, C4), occipital (O1, O2), parietal (P3, P4 and Pz) and temporal (T5 and T6) leads (red curves) for EEG patterns of a healthy person (data from [12]).

Жүктеу (1MB)
4. Fig. 3. Dependencies h(q) (a, c) and singularity spectra (b, d) for EEG patterns of a patient with schizophrenia (a, b) and depression (c, d). Frontal and central leads (F3, Fz, F4, C3, C4) (blue curves), occipital (O1, O2), parietal (P3, P4, Pz) and (T5, T6) temporal leads (red curves) (data from [12]).

Жүктеу (1MB)
5. Fig. 4. Examples of EEG power spectra for a healthy person (a–b) and a patient with atrial fibrillation (g–e). The initial (mixed) power spectra (a, e), the averaged mixed spectra are marked in blue, the fractal components of the spectra are marked in red (b, e), the averaged vibrational spectra (c, e). O1 lead (data from [1]).

Жүктеу (1MB)
6. Fig. 5 Averaged spectra of the singularity D(h) for the EEG of a healthy person for various leads (a–b) and for a patient with atrial fibrillation (g–e) (data from [1]).

Жүктеу (1MB)

© Russian Academy of Sciences, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».