Gabaergic System in the Regulation of the Functioning of Pancreas Beta-Cells in Normal Physiological Conditions and in Diabetes

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Abstract

The incidence of diabetes mellitus (DM) is steadily increasing all over the world, and at the same time there is an increase in its complications, which are the main causes of early disability and premature death. The pathogenesis of DM is based on a steady decrease in pancreatic β-cells. A decrease in β-cell mass leads to a decrease in insulin production and the development of hyperglycemia and associated severe complications. Therefore, the need to prevent the death of β-cells and stimulate their regeneration is obvious. In recent literature, much attention has been paid to the role of GABA in the regulation of the function of α- and β-cells of the pancreas and carbohydrate metabolism, which is the subject of this review. Gamma-aminobutyric acid (GABA) in β-cells and pancreatic islets is determined in quantities comparable to those in the brain. It also contains a high amount of glutamadecarboxylase, an enzyme that synthesizes GABA. In DM, the level of GABA in pancreatic β-cells decreases and this correlates with the severity of DM. GABA plays an important role in the paracrine regulation of α- and β-cell functions and carbohydrate homeostasis. The potential possibility of using GABA to achieve a decrease in apoptosis and, at the same time, an increase in the regeneration of β-cells, an increase in the β-cell mass of the pancreas has been proven. It has been proven that the positive effect of GABA on the structure and functions of pancreatic β-cells in DM can be significantly higher when combined with antidiabetic agents: GLP-1 receptor agonists, DPP-4 inhibitors, SGLT-2 inhibitors, and others. The antidiabetic properties of GABA are explained by its interaction with various signaling proteins (Kloto protein, SIRT, PI3K/Akt, CREB-IRS2, NF-kB, Nrf2 and many others), through which these effects are realized. Data on the pancreatic protective effect of GABA and its derivatives can form the basis for the development of a new pharmacotherapeutic strategy for the treatment of DM and associated complications.

About the authors

I. N. Tyurenkov

Volgograd State Medical University

Email: mbfdoc@gmail.com
Russia, 400087, Volgograd

T. I. Faibisovich

Kirov Military Medical Academy

Email: mbfdoc@gmail.com
Russia, 194044, St. Petersburg

M. A. Dubrovina

Volgograd State Medical University

Email: mbfdoc@gmail.com
Russia, 400087, Volgograd

D. A. Bakulin

Volgograd State Medical University

Author for correspondence.
Email: mbfdoc@gmail.com
Russia, 400087, Volgograd

D. V. Kurkin

Volgograd State Medical University

Email: mbfdoc@gmail.com
Russia, 400087, Volgograd

References

  1. Дедов И.И., Шестакова М.В., Викулова О.К. и др. Эпидемиологические характеристики сахарного диабета в Российской Федерации: клинико-статистический анализ по данным регистра сахарного диабета на 01.01.2021. // Сахарный диабет. 2021. Т. 24. № 3. С. 204–221.
  2. Дедов И.И., Шестакова М.В., Майорова А.Ю. и др. Алгоритмы специализированной медицинской помощи больным сахарным диабетом (9-й выпуск) // Сахарный диабет. 2019. Т. 22. № 1. С. 1–144.
  3. Нестерова А.А., Глинка Е.Ю., Тюренков И.Н. и др. Белок клото–универсальный регулятор физиологических процессов в организме // Успехи физиологических наук. 2020. Т. 51. № 2. С. 88–104.
  4. Самотруева М.А., Тюренков И.Н., Прилучный С.В. и др. Психоиммуномоделирующая активность фенибута при экспериментальном гипертиорезе // Экспериментальная и клиническая фармакология. 2012. Т. 8. № 1. С. 51-56.
  5. Тюренков И.Н., Галимзянов Х.М., Тёплый Д.Л. и др. Экспериментальное изучение иммунокорригирующих свойств фенотропила в аспекте “доза- эффект” // Иммунология. 2009. Т. 30. № 5. С. 302–305.
  6. Тюренков И.Н., Самотруева М.А., Овчарова А.Н. Влияние баклофена на показатели клеточного звена иммунитета // Экспериментальная и клиническая фармакология. 2008. Т. 71. № 3. С. 43–45.
  7. Accili D., Talchai S.C., Kim-Muller J.Y. et al When β-cells fail: lessons from dedifferentiation // Diabetes Obes. Metab. 2016. V. 18. P. 117–122.
  8. Ackeifi C., Wang P., Karakose E. et al. GLP-1 receptor agonists synergize with DYRK1A inhibitors to potentiate functional human β cell regeneration // Sci. Transl. Med. 2020. V. 12. № 530. P. eaaw9996.
  9. Ackermann A.M., Moss N.G., Kaestner K.H. GABA and artesunate do not induce pancreatic α-to-β cell transdifferentiation in vivo // Cell Metab. 2018. V. 28. № 5. P. 787–792.
  10. Adoga J.O., Channa, M.L. Nadar A. Type-2 diabetic rat heart: the effect of kolaviron on mTOR-1, P70S60K, PKC-α, NF-kB, SOD-2, NRF-2, eNOS, AKT-1, ACE, and P38 MAPK gene expression profile // Biomed. Pharmacother. 2022. V. 148. P.112736.
  11. Al-Kuraishy H.M., Hussian N.R., Al-Naimi M.S. et al. The potential role of pancreatic γ-aminobutyric acid (GABA) in diabetes mellitus: a critical reappraisal // Int. J. Prev. Med. 2021. V. 2. P.19.
  12. Antoni F.A. The case for clinical trials with novel GABAergic drugs in diabetes mellitus and obesity // Life (Basel). 2022. V. 12. № 2. P. 322.
  13. Balboa D., Iworima D.G., Kieffer T.J. Human pluripotent stem cells to model islet defects in diabetes // Front. Endocrinol. 2021. V. 12. P. 642152.
  14. Bastidas-Ponce A., Scheibner K., Lickert H. et al. Cellular and molecular mechanisms coordinating pancreas development // Development. 2017. V. 144. № 16. P. 2873–2888.
  15. Belle van T.L., Coppieters K.T., von Herrath M.G. Type 1 diabetes: etiology, immunology, and therapeutic strategies // Physiol. Rev. 2011. V. 91. № 1. P. 79–118.
  16. Benninger R.K.P., Hodson D.J. New understanding of β-cell heterogeneity and in situ islet function // Diabetes. 2018. V. 67. P. 537–547.
  17. Ben-Othman N., Vieira A., Courtney M. et al. Long-term GABA administration induces alpha cell-mediated beta-like cell neogenesis // Cell. 2017. V. 168. № 1–2. P. 73–85.
  18. Bettler B., Kaupmann K., Mosbacher J. et al. Molecular structure and physiological functions of GABAB receptors // Physiological Reviews. 2004. V. 84. № 3. P. 835–867.
  19. Bhandage A.K., Jin Z., Korol S.V. et al. GABA regulates release of inflammatory cytokines from peripheral blood mononuclear cells and CD4+ T cells and is immunosuppressive in type 1 diabetes // EBioMedicine. 2018. № 30. P. 283–294.
  20. Bonner-Weir S., Li W.C., Ouziel-Yahalom L. et al. β-Cell growth and regeneration: replication is only part of the story // Diabetes. 2010. V. 59. № 10. P. 2340–2348.
  21. Bottino R., Knoll M.F., Knoll C.A. et al. The future of islet transplantation is now // Frontiers in Medicine. 2018. № 5. P. 202.
  22. Bramswig N.C., Kaestner K.H. Transcriptional regulation of α-cell differentiation // Diabetes, Obesity and Metabolism. 2011. № 13. P. 13–20.
  23. Braun M., Ramracheya R., Bengtsson M. et al. γ-Aminobutyric acid (GABA) is an autocrine excitatory transmitter in human pancreatic β-cells // Diabetes. 2010. V. 59 № 7. P. 1694–1701.
  24. Bu D.F., Erlander M.G., Hitz B.C. et al. Two human glutamate decarboxylases, 65-kDa GAD and 67-kDa GAD, are each encoded by a single gene // Proc. Natl. Acad. Sci. USA. 1992. № 89. P. 2115–2119.
  25. Buddhala C., Hsu C.C., Wu J.Y. A novel mechanism for GABA synthesis and packaging into synaptic vesicles // Neurochem. Internat. 2009. V. 55. № 1–3. P. 9–12.
  26. Butler A.E., Dhawan S., Hoang J. et al. Beta-cell deficit in obese type 2 diabetes, a minor role of beta-cell dedifferentiation and degranulation // J Clin Endocrinol Metab. 2016. V. 101. P. 523–532.
  27. Campbel S.A., Golec D.P., Hubert M. et al. Human islets contain a subpopulation of glucagon-like peptide-1 secreting α cells that is increased in type 2 diabetes // Mol Metab. 2020. V. 39. P. 101014.
  28. Chebib M., Johnston G.A. GABA-activated ligand gated ion channels: medicinal chemistry and molecular biology // J. Med. Chem. 2000. V. 43. № 8. P. 1427–1447.
  29. Chen H., Zho W., Ruan Y. et al. Reversal of angiotensin ll-induced β-cell dedifferentiation via inhibition of NF-κB signaling // Molecular Medicine. 2018. V. 24. № 1. P. 43.
  30. Chessler S.D., Lernmark Å. Alternative splicing of GAD67 results in the synthesis of a third form of glutamic-acid decarboxylase in human islets and other non-neural tissues // J. Biol. Chem. 2000. V. 275. № 7. P. 5188–5192.
  31. Chon S., Riveline J.P., Blondeau B. et al. Incretin-based therapy and pancreatic beta cells // Diabetes & Metabolism. 2014. V. 40. № 6. P. 411–422.
  32. Cinti F., Bouchi R., Kim-Muller J.Y. et al. Evidence of β-cell dedifferentiation in human type 2 diabetes // J. Clin. Endocrinol. Metab. 2016. V. 101. № 3. P. 1044–1054.
  33. Cnop M., Hughes S.J., Igoillo-Esteve M. et al. The long lifespan and low turnover of human islet beta cells estimated by mathematical modelling of lipofuscin accumulation // Diabetologia. 2010. V. 53. № 2. P. 321–330.
  34. Collombat P., Hecksher-Sørense J., Serup P. et al. Specifying pancreatic endocrine cell fates // Mechanisms of Development. 2006. V. 123. № 7. P. 501–512.
  35. Collombat P., Mansouri A., Hecksher-Sørensen J. et al. Opposing actions of Arx and Pax4 in endocrine pancreas development // Genes & Development. 2003. V. 17. № 20. P. 2591–2603.
  36. Collombat P., Xu X., Ravassard P., Sosa-Pineda B. et al. The ectopic expression of Pax4 in the mouse pancreas converts progenitor cells into alpha and subsequently beta cells // Cell. 2009. V. 138. P. 449–462.
  37. Daems C., Welsch S., Boughaleb H. et al. Early treatment with Empagliflozin and GABA improves β-cell mass and glucose tolerance in streptozotocin-treated mice // J. Diabetes Res. 2019. V. 2019. P. 2813489.
  38. Dai C., Hang Y., Shostak A. et al. Age-dependent human β cell proliferation induced by glucagon-like peptide 1 and calcineurin signaling // J. Сlin. Investig. 2017. V. 127. № 10. P. 3835–3844.
  39. De Tata V. Age-related impairment of pancreatic Beta-cell function: pathophysiological and cellular mechanisms // Front. Endocrinol. (Lausanne). 2014. V. 5. P. 138.
  40. Dean E.D., Li M., Prasad N., Wisniewski S.N. et al. Interrupted glucagon signaling reveals hepatic α cell axis and role for L-glutamine in α cell proliferation // Cell Metab. 2017. V. 25. № 6. P. 1362–1373.e5.
  41. Dionisio L., José De Rosa M., Bouzat C., Esandi Mdel C. An intrinsic GABAergic system in human lymphocytes // Neuropharmacology. 2011. V. 60. № 2–3. P. 513–519.
  42. Dolenšek J., Rupnik M.S., Stožer A. Structural similarities and differences between the human and the mouse pancreas // Islets. 2015. V. 7. № 1. P. e1024405.
  43. Dong H., Kumar M., Zhang Y. et al. Gamma-aminobutyric acid up- and downregulates insulin secretion from beta cells in concert with changes in glucose concentration // Diabetologia. 2006. V. 49. № 4. P. 697–705.
  44. Dor Y., Brown J., Martinez O.I., Melton D.A. Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation // Nature. 2004. V. 429. № 6987. P. 41–46.
  45. Dorrell C., Schug J., Canaday P.S. et al. Human islets contain four distinct subtypes of β cells // Nat. Commun. 2016. V. 7. P. 11756.
  46. Eizirik D.L., Pasquali L., Cnop M. Pancreatic β-cells in type 1 and type 2 diabetes mellitus: different pathways to failure // Nat. Rev. Endocrinol. 2020. V. 16. № 7. P. 349–362.
  47. Fava G.E., Dong E.W., Wu H. Intra-islet glucagon-like peptide 1 // J. Diabetes Complications. 2016. V. 30. № 8. P. 1651–1658.
  48. Fonseca S.G., Gromada J., Urano F. Endoplasmic reticulum stress and pancreatic β-cell death // Trends Endocrinol. Metab. 2011. V. 22. № 7. P. 266–274.
  49. Gasnier B. The loading of neurotransmitters into synaptic vesicles // Biochimie. 2000. V. 82. № 4. P. 327–337.
  50. Granger A., Kushner J.A. Cellular origins of beta-cell regeneration: a legacy view of historical controversies // J. Intern. Med. 2009. V. 266. № 4. P. 325–338.
  51. Gregg B.E., Moore P.C., Demozay D. et al. Formation of a human β-cell population within pancreatic islets is set early in life // J. Clin Endocrinol. Metab. 2012. V. 97. № 9. P. 3197–1206.
  52. Gromada J., Chabosseau P., Rutter G.A. The α-cell in diabetes mellitus // Nat. Rev. Endocrinol. 2018. V. 14. № 12. P. 694–704.
  53. Gu X.H., Kurose T., Kato S. et al. Suppressive effect of GABA on insulin secretion from the pancreatic beta-cells in the rat // Life Sci. 1993. V. 52. № 8. P. 687–694.
  54. Gunasekaran U., Gannon M. Type 2 diabetes and the aging pancreatic beta cell // Aging (Albany NY). 2011. V. 3. № 6. P. 565–575.
  55. Guney M.A., Lorberbaum D.S., Sussel L. Pancreatic β cell regeneration: To β or not to β // Curr. Opin. Physiol. 2020. V. 14. P. 13–20.
  56. Gutierrez G.D., Gromada J., Sussel L. Heterogeneity of the pancreatic beta cell // Front. Genet. 2017. V. 8. P. 22.
  57. Hansen J.B., Tonnesen M.F., Madsen A.N. et al. Divalent metal transporter 1 regulates iron-mediated ROS and pancreatic β cell fate in response to cytokinesm // Cell Metab. 2012. V. 16. № 4. P. 449–461.
  58. Hauge-Evans A.C., Squires P.E., Persaud S.J., Jones P.M. Pancreatic beta-cell-to-beta-cell interactions are required for integrated responses to nutrient stimuli: enhanced Ca2+ and insulin secretory responses of MIN6 pseudoislets // Diabetes. 1999. V. 48. № 7. P. 1402–1408.
  59. Helman A., Avrahami D., Klochendler A. et al. Effects of ageing and senescence on pancreatic β-cell function // Diabetes, Obesity and Metabolism. 2016. V. 18. P. 58–62.
  60. Hill H., Elksnis A., Lundkvist P. et al. Endogenous levels of gamma amino-butyric acid are correlated to glutamic-acid decarboxylase antibody levels in type 1 diabetes // Biomedicines. 2021. V. 10. № 1. P. 91.
  61. Hua S., Liu Q., Li J. et al. Beta-klotho in type 2 diabetes mellitus: From pathophysiology to therapeutic strategies // Rev. Endocr. Metab. Disord. 2021. V. 22. № 4. P. 1091–1109.
  62. Irwin D.M. Molecular evolution of mammalian incretin hormone genes // Regulatory Peptides. 2009. V. 155. № 1–3. P. 121–130.
  63. Januzi L., Poirier J.W., Maksoud M.J. et al. Autocrine GABA signaling distinctively regulates phenotypic activation of mouse pulmonary macrophages // Cell. Immunol. 2018. V. 332. P. 7–23.
  64. Jin Z., Mendu S.K., Birnir B. GABA is an effective immunomodulatory molecule // Amino Acids. V. 2013. 45. P. 87–94.
  65. Kanaani J., Cianciaruso C., Phelps E.A. et al. Compartmentalization of GABA synthesis by GAD67 differs between pancreatic beta cells and neurons // PloS One. 2015. V. 10. № 2. P. e0117130.
  66. Kaufman D.L., Clare-Salzler M., Tian J. et al. Spontaneous loss of T-cell tolerance to glutamic acid decarboxylase in murine insulin-dependent diabetes // Nature. 1993. V. 366. P. 69–72.
  67. Kaufman D.L., Erlander M.G., Clare-Salzler M. et al. Autoimmunity to two forms of glutamate decarboxylase in insulin-dependent diabetes mellitus // J. Clin. Investig. 1992. V. 89. P. 283–292.
  68. Köhler C.U., Olewinsk M., Tannapfel A. et al. Cell cycle control of β-cell replication in the prenatal and postnatal human pancreas // American J. Physiology-Endocrinology and Metabolism. 2011. V. 300. № 1. P. E221–E230.
  69. Korol S.V., Jin Z., Jin Y. et al. Functional characterization of native, high-affinity GABAA receptors in human pancreatic β cells // EBioMedicine. 2018. V. 30. P. 273–282.
  70. Kulkarni R.N., Mizrachi E.B., Ocana A.G., Stewart A.F. Human β-cell proliferation and intracellular signaling: driving in the dark without a road map // Diabetes. 2012. V. 61. № 9. P. 2205–2213.
  71. Levetan C.S., Pierce S.M. Distinctions between the islets of mice and men: implications for new therapies for type 1 and 2 diabetes // Endocr. Pract. 2013. V. 19. № 2. P. 301–312.
  72. Li J., Hu X., Liang F. et al. Therapeutic effects of moxibustion simultaneously targeting Nrf2 and NF-κB in diabetic peripheral neuropathy // Appl. Biochem. Biotechnol. 2019. V. 189. № 4. P. 1167–1182.
  73. Ligon B., Yang J., Morin S.B. et al. Regulation of pancreatic islet cell survival and replication by γ-aminobutyric acid // Diabetologia. 2007. V. 50. № 4. P. 764–773.
  74. Liu W., Lau H.K., Son D.O. et al. Combined use of GABA and sitagliptin promotes human β-cell proliferation and reduces apoptosis // J. Endocrinol. 2021. V. 248. № 2. P. 133–143.
  75. Lorenz-Guertin J.M., Jacob T.C. GABA type a receptor trafficking and the architecture of synaptic inhibition // Developmental Neurobiology. 2018. V. 78. № 3. P. 238–270.
  76. Marchetti P., Lupi R., Bugliani M. et al. A local glucagon-like peptide 1 (GLP-1) system in human pancreatic islets // Diabetologia. 2012. V. 55. № 12. P. 3262–3272.
  77. Matveyenko A.V., Butler P.C. Relationship between beta-cell mass and diabetes onset // Diabetes, obesity & metabolism. 2008. V. 4. № 4. P. 23–31.
  78. Md Moin A.S., Dhawan S., Cory M. et al. Increased frequency of hormone negative and polyhormonal endocrine cells in lean individuals with type 2 diabetes // J. Clin. Endocrinol. Metab. 2016. V. 101. P. 3628–3636.
  79. Meier J.J., Butler A.E., Saisho Y. et al. Beta-cell replication is the primary mechanism subserving the postnatal expansion of beta-cell mass in humans // Diabetes. 2008. V. 57. P. 1584–1594.
  80. Meier J.J., Lin J.C., Butler A.E. et al. Direct evidence of attempted beta cell regeneration in an 89-year-old patient with recent-onset type 1 diabetes // Diabetologia. 2006. V. 49. № 8. P. 1838–1844.
  81. Mendu S.K., Bhandage A., Jin Z., Birnir B. Different subtypes of GABA-A receptors are expressed in human, mouse and rat T lymphocytes // PLoS One. 2012. V. 7. № 8. P. e42959.
  82. Menegaz D., Hagan D.W., Almaça J. et al. Mechanism and effects of pulsatile GABA secretion from cytosolic pools in the human beta cell // Nature Metabolism. 2019. V. 1. № 11. P. 1110–1126.
  83. Moede T., Leibiger I.B., Berggren P.O. Alpha cell regulation of beta cell function // Diabetologia. 2020. 63. № 10. P. 2064–2075.
  84. Morán I., Akerman I., Van De Bunt M. et al. Human β cell transcriptome analysis uncovers lncRNAs that are tissue-specific, dynamically regulated, and abnormally expressed in type 2 diabetes // Cell Metab. 2012. V. 16. № 4. P. 435–448.
  85. Müller T.D., Finan B., Bloom S.R. et al. Glucagon-like peptide 1 (GLP-1) // Mol. Metab. 2019. V. 30. P. 72–130.
  86. Nair G., Hebrok M. Islet formation in mice and men: lessons for the generation of functional insulin-producing β-cells from human pluripotent stem cells // Current opinion in genetics & development. 2015. V. 32. P. 171–180.
  87. Notkins A.L., Lernmark A. Autoimmune type 1 diabetes: resolved and unresolved issues // J. Clin. Investig. 2001. V. 108. № 9. P. 1247–1252.
  88. Olsen R.W. GABAA receptor: Positive and negative allosteric modulators // Neuropharmacology. 2018. V. 136. P. 10–22.
  89. Omar B.A., Liehua L., Yamada Y. et al. Dipeptidyl peptidase 4 (DPP-4) is expressed in mouse and human islets and its activity is decreased in human islets from individuals with type 2 diabetes // Diabetologia. 2014. V. 57. № 9. P. 1876–1883.
  90. Pan F.C., Wright C. Pancreas organogenesis: from bud to plexus to gland // Developmental Dynamics. 2011. V. 240. № 3. P. 530–565.
  91. Panda H., We H., Suzuki M., Yamamoto M. Multifaceted roles of the KEAP1–NRF2 system in cancer and inflammatory disease milieu // Antioxidants. 2022. V. 11. № 3. P. 538.
  92. Pipeleers D., De Mesmaeker I., Robert T., Van Hulle F. Heterogeneity in the beta-cell population: a guided search into its significance in pancreas and in implants // Current Diabetes Reports. 2017. V. 17. № 10. P. 1–7.
  93. Pipeleers D., In’t Veld P. I., Maes E., Van De Winkel M. Glucose-induced insulin release depends on functional cooperation between islet cells // Proceedings of the National Academy of Sciences. 1982. V. 79. № 23. P. 7322–7325.
  94. Prud’homme G.J., Glink Y., Hasilo C. et al. GABA protects human islet cells against the deleterious effects of immunosuppressive drugs and exerts immunoinhibitory effects alone // Transplantation. 2013. V. 96. № 7. P. 616–623.
  95. Prud’homme G.J., Kur, M., Wang Q. Pathobiology of the Klotho Antiaging Protein and Therapeutic Considerations // Front. Aging. 2022. V. 3. P. 931331.
  96. Prud’homme G.J., Glinka Y., Kurt M. et al. The anti-aging protein Klotho is induced by GABA therapy and exerts protective and stimulatory effects on pancreatic beta cells // Biochem. Biophys. Res. Comm. 2017. V. 493. № 4. P. 1542–1547.
  97. Prud'homme G.J., Glinka Y., Wang Q. Immunological GABAergic interactions and therapeutic applications in autoimmune diseases // Autoimmunity Reviews. 2015. V. 14. № 11. P. 1048–1056.
  98. Purwana I., Zheng J., Li X. et al. GABA promotes human β-cell proliferation and modulates glucose homeostasis // Diabetes. 2014. V. 63. № 12. P. 4197–4205.
  99. Rachdi L., Maugein A., Pechberty S. et al. Regulated expression and function of the GABAB receptor in human pancreatic beta cell line and islets // Scientific Reports. 2020. V. 10. № 1. P. 13469.
  100. Ravassard P., Hazhouz Y., Pechberty S. et al. A genetically engineered human pancreatic β cell line exhibiting glucose-inducible insulin secretion // J . Clin. Investig. 2011. V. 121. № 9. P. 3589–3597.
  101. Rieck S., Kaestner K.H. Expansion of β-cell mass in response to pregnancy // Trends Endocrinol Metab. 2010. V. 21. P. 151–158.
  102. Robertson R. P. Chronic oxidative stress as a central mechanism for glucose toxicity in pancreatic islet beta cells in diabetes // J. Biol. Chem. 2004. V. 279. № 41. P. 42351–42354.
  103. Rosado-Olivieri E.A., Aigha I.I., Kenty J.H., Melton D.A. Identification of a LIF-responsive, replication-competent subpopulation of human β cells // Cell Metab. 2020. V. 31. P. 327–338.e6.
  104. Roscioni S.S., Migliorini A., Gegg M., Lickert H. Impact of islet architecture on β-cell heterogeneity, plasticity and function // Nat. Rev. Endocrinol. 2016. V. 12. № 12. P. 695–709.
  105. Rossini A.A. Autoimmune diabetes and the circle of tolerance // Diabetes. 2004. V. 53. № 2. P. 267–275.
  106. Ryan E.A., Lakey J.R., Rajotte R.V. et al. Clinical outcomes and insulin secretion after islet transplantation with the Edmonton protocol // Diabetes. 2001. V. 50. № 4. P. 710–719.
  107. Salpeter S.J., Klein A.M., Huangfu D. et al. Glucose and aging control the quiescence period that follows pancreatic beta cell replication // Development. 2010. V. 137. № 19. P. 3205–3213.
  108. Segerstolpe A., Palasantza A., Eliasson P. et al. Single-cell transcriptome profiling of human pancreatic islets in health and type 2 diabetes // Cell Metabolism. 2016. V. 24. № 4. P. 593–607.
  109. Shao W., Wang Z., Ip W. et al. GLP-1 (28–36) improves β-cell mass and glucose disposal in streptozotocin-induced diabetic mice and activates cAMP/PKA/β-catenin signaling in β-cells in vitro // American J. Physiology-Endocrinology and Metabolism. 2013. V. 304. № 12. P. E1263–E1272.
  110. Shapiro A.J., Lakey J.R., Ryan E.A. et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen // New England Journal of Medicine. 2000. V. 343. № 4. P. 230–238.
  111. Shapiro A.J., Ricordi C., Hering B.J. et al. International trial of the Edmonton protocol for islet transplantation // New England Journal of Medicine. 2006. V. 355. № 13. P. 1318–1330
  112. Shcheglova E., Blaszczyk K., Borowiak M. Mitogen synergy: an emerging route to boosting human beta cell proliferation // Front. Cell Dev. Biol. 2022. V. 9. P. 734597.
  113. Shih H.P., Wang A., Sander M. Pancreas organogenesis: from lineage determination to morphogenesis // Annu. Rev. Cell Dev. Biol. 2013. V. 29. № 1. P. 81–105.
  114. Soltani N., Qiu H., Aleksic M. et al. GABA exerts protective and regenerative effects on islet beta cells and reverses diabetes // Proceedings of the National Academy of Sciences. 2011. V. 108. № 28. P. 11692–11697.
  115. Sparrow E.L., James S., Hussain K. et al. Activation of GABA(A) receptors inhibits T cell proliferation // PloS One. 2021. V. 16. № 5. P. e0251632.
  116. Spears E., Serafimidis I., Powers AC., Gavalas A. Debates in Pancreatic Beta Cell Biology: Proliferation Versus Progenitor Differentiation and Transdifferentiation in Restoring β Cell Mass // Front. Endocrinol. (Lausanne). 2021. V. 12. P. 722250.
  117. Susztak K., Raff A.C., Schiffer M., Bottinger E.P. Glucose-induced reactive oxygen species cause apoptosis of podocytes and podocyte depletion at the onset of diabetic nephropathy // Diabetes. 2006. V. 55. № 1. P. 225–233.
  118. Talchai C., Xuan S., Lin H.V. et al. Pancreatic β cell dedifferentiation as a mechanism of diabetic β cell failure // Cell. 2012. V. 150. № 6. P. 1223–1234.
  119. Talebi M., Taleb M., Farkhondeh T. et al. New insights into the role of the Nrf2 signaling pathway in green tea catechin applications // Phytotherapy Research. 2021. V. 35. № 6. P. 3078–3112.
  120. Tanday N., Irwin N., Flatt P.R., Moffett R.C. Dapagliflozin exerts positive effects on beta cells, decreases glucagon and does not alter beta- to alpha-cell transdifferentiation in mouse models of diabetes and insulin resistance // Biochem. Pharmacol. 2020. V. 177. P. 114009.
  121. Taneera J., Jin Z., Jin Y. et al. γ-Aminobutyric acid (GABA) signalling in human pancreatic islets is altered in type 2 diabetes // Diabetologia. 2012. V. 55. № 7. P. 1985–1994.
  122. Tatsuoka H., Sakamoto S., Yabe D. et al. Single-cell transcriptome analysis dissects the replicating process of pancreatic beta cells in partial pancreatectomy model // Iscience. 2020. V. 23. № 12. P. 101774.
  123. Teta M., Long S.Y., Wartschow L.M. et al. Very slow turnover of beta-cells in aged adult mice // Diabetes. 2005. V. 54. № 9. P. 2557–2567.
  124. Thorel F., Nepote V., Avril I. et al. Conversion of adult pancreatic alpha-cells to beta-cells after extreme beta-cell loss // Nature 2010. V. 464. P. 1149–54.
  125. Tian J., Dan H., Chen Z. et al. γ-Aminobutyric acid regulates both the survival and replication of human β-cells // Diabetes. 2013. V. 62. № 11. P. 3760–3765.
  126. Tian J., Dang H., Middleton B., Kaufman D.L. Clinically applicable GABA receptor positive allosteric modulators promote ß-cell replication // Scientific Reports. 2017. V. 7. № 1. P. 374.
  127. Tian J., Dang H., O’Laco K.A. et al. Homotaurine treatment enhances CD4+ and CD8+ regulatory T cell responses and synergizes with low-dose anti-CD3 to enhance diabetes remission in type 1 diabetic mice // ImmunoHorizons. 2019. V. 3. № 10. P. 498–510.
  128. Tian J., Dang H.N., Yong J. et al. Oral treatment with γ-aminobutyric acid improves glucose tolerance and insulin sensitivity by inhibiting inflammation in high fat diet-fed mice // PLoS One. 2011. V. 6. № 9. P. e25338.
  129. Tian J., Lu Y., Zhang H. et al. Gamma-aminobutyric acid inhibits T cell autoimmunity and the development of inflammatory responses in a mouse type 1 diabetes model // J. Immunology. 2004. V. 173. № 8. P. 5298–5304.
  130. Tian J., Middleton B., Lee V.S. et al. GABAB-Receptor Agonist-Based Immunotherapy for Type 1 Diabetes in NOD Mice // Biomedicines. 2021. V. 9. № 1. P. 43.
  131. Typiak M., Kulesza T., Rachubik P. et al. Role of klotho in hyperglycemia: its levels and effects on fibroblast growth factor receptors, glycolysis, and glomerular filtration // Intern. J. Mol. Sci. 2021. V. 22. № 15. P. 7867.
  132. Tyurenkov I.N., Perfilova V.N., Nesterova A.A., Glinka Y. Klotho protein and cardio-vascular system // Biochemistry (Moscow). 2021. V. 86. № 2. P. 132–145.
  133. Ulasov A.V., Rosenkranz A.A., Georgiev G.P., Sobolev A.S. Nrf2/Keap1/ARE signaling: Towards specific regulation // Life Sci. 2022. V. 291. P. 120111.
  134. Vakilian M., Tahamtani Y., Ghaedi K. A review on insulin trafficking and exocytosis // Gene. 2019. V. 706. P. 52–61.
  135. Wan Y., Wang Q., Prud’homme G.J. GABAergic system in the endocrine pancreas: a new target for diabetes treatment // Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy. 2015. V. 8. P. 79–87.
  136. Wang K.L., Tao M., Wei T.J., Wei R. Pancreatic β cell regeneration induced by clinical and preclinical agents // World J. Stem Cells. 2021. V. 13. № 1. P. 64–77.
  137. Wang P., Fiaschi-Taesch N., Vasavada R. et al. Diabetes mellitus – advances and challenges in human β-cell proliferation // Nat. Rev. Endocrinol. 2015. V. 11. P. 201–212.
  138. Wang Q., Ren D., Li Y., Xu G. Klotho attenuates diabetic nephropathy in db/db mice and ameliorates high glucose-induced injury of human renal glomerular endothelial cells // Cell Cycle. 2019. V. 18. № 6–7. P. 696–707.
  139. Weitz J., Menegaz D., Caicedo A. Deciphering the complex communication networks that orchestrate pancreatic islet function // Diabetes. 2021. V. 70. № 1. P. 17–26.
  140. Xie J., Zhang X., Zhang L. Negative regulation of inflammation by SIRT1 // Pharmacological Research. 2013. V. 67. № 1. P. 60–67.
  141. Xin Y., Dominguez Gutierrez G., Okamoto H. et al. Pseudotime ordering of single human β-cells reveals states of insulin production and unfolded protein response // Diabetes. 2018. V. 67. № 9. P. 1783–1794.
  142. Xu E., Kumar M., Zhang Y. et al. Intra-islet insulin suppresses glucagon release via GABA-GABAA receptor system // Cell Metabolism. 2006. V. 3. № 1. P. 47–58.
  143. Yagishita Y., Uruno A., Chartoumpekis D.V. et al. Nrf2 represses the onset of type 1 diabetes in non-obese diabetic mice // J. Endocrinology. 2019. V. 240. № 3. P. 403–416.
  144. Yamamoto M., Kensler T.W., Motohashi H. The KEAP1-NRF2 system: a thiol-based sensor-effector apparatus for maintaining redox homeostasis // Physiological Reviews. 2018. V. 98. № 3. P. 1169–1203.
  145. Zeng C., Mulas F., Sui Y. et al. Pseudotemporal ordering of single cells reveals metabolic control of postnatal β cell proliferation // Cell Metab. 2017. V. 25. P. 1160–1175.
  146. Zhong F., Jiang Y. Endogenous pancreatic β cell regeneration: a potential strategy for the recovery of β cell deficiency in diabetes // Frontiers in endocrinology. 2019. V. 10. P. 101.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (111KB)

Copyright (c) 2023 И.Н. Тюренков, Т.И. Файбисович, М.А. Дубровина, Д.А. Бакулин, Д.В. Куркин

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies