Calciopathies and Neuropsychic Disorders: Physiological and Genetic Aspects

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Abstract

Calcium is a key and universal second messenger, an effective regulator of metabolic processes. Calciopathies – violations of the use of calcium in the cell, caused by dysfunction of the subunits of the ion channel and/or proteins regulating them, include abnormalities in the work of regulatory pathways and mitochondria, accompany neuropsychiatric diseases. The identification of associated genes of calcium metabolism and the study of the role of changes in their work in the determination of such conditions is important for the search for new molecular targets for targeted pharmacotherapy of mental disorders and concomitant diseases, and their prevention. The review is devoted to the consideration of physiological and genetic disorders in the regulation of calcium homeostasis, the relationship with psychoneuropathology of various origins, known and promising therapeutic approaches to their treatment, based on the impact on the processes of calcium metabolism and the activity of calcium response genes.

About the authors

N. A. Dyuzhikova

Pavlov Institute of Physiology of the RAS

Email: pavlova@infran.ru
Russia, 199034, St. Petersburg

M. B. Pavlova

Pavlov Institute of Physiology of the RAS

Author for correspondence.
Email: pavlova@infran.ru
Russia, 199034, St. Petersburg

References

  1. Безпрозванный И.Б. Система кальциевой сигнализации при нейродегенерации // Acta Naturae (русскоязычная версия). 2010. Т. 2. С. 80–88.
  2. Заводник И.Б. Митохондрии, кальциевый гомеостаз и кальциевая сигнализация // Биомедицинская химия. 2016. Т. 62. № 3. С. 311–317.
  3. Зинченко В.П., Долгачева Л.П. Внутриклеточная сигнализация. Пущино, 2003. 84c.
  4. Зуев В.А. Иммунологическая теория патогенеза болезни Альцгеймера: факты и гипотезы // Современные проблемы науки и образования. 2019. № 4.
  5. Литвиненко И.В., Красаков И.В., Бисага Г.Н., Скулябин Д.И., Полтавский И.Д. Современная концепция патогенеза нейродегенеративных заболеваний и стратегия терапии // Журн. неврологии и психиатрии. 2017. 6. Вып. 2. С. 3–10.
  6. Мельников К.Н. Разнообразие и свойства кальциевых каналов возбудимых мембран // Психофармакология и биологическая наркология. 2006. Т. 6. № 1–2. С. 1139–1155.
  7. Николлс Д.Г., Мартин А.Р., Валлас Б.Д., Фукс П.А. От нейрона к мозгу. Изд. 4-е, УРСС: Книжный дом “ЛИБРОКОМ”, М.: 2017. [Nikolls D.G., Martin A.R., Vallas B.D., Fuks P.A. From neuron to brain [Ot neyrona k mozgu]. Izd. 4-e, URSS: Knizhnyy dom “LIBROKOM”, Moscow: 2017. (in Russian)]
  8. Соловьева Н.В., Чаусова С.В., Кичук И.В., Макарова Е.В. Влияние кальциевой сигнализации на развитие расстройств аутистического спектра // Патологическая физиология и экспериментальная терапия. 2020. Т. 64. № 4. С. 106–117.
  9. Федоренко О.Ю., Иванова С.А. Новый взгляд на генетику нейрокогнитивного дефицита при шизофрении // Журн. неврологии и психиатрии им. С.С. Корсакова. 2020. Т. 120. № 8. С. 183–192.
  10. Циркин В.И., Сизова Е.Н. Cа-каналы, управляемые кальциевым депо (обзор литературы) // Успехи физиологических наук. 2020. Т. 51. № 2. С. 37–54.
  11. Abeti R., Abramov A.Y. Mitochondrial Ca2+ in neurodegenerative disorders // Pharmacological Research. 2015. V. 99. P. 377–381.
  12. Alzheimer’s Association Calcium Hypothesis Workgroup. Calcium Hypothesis of Alzheimer’s disease and brain aging: A framework for integrating new evidence into a comprehensive theory of pathogenesis // Alzheimers Dement. 2017. V. 13. P. 178–182 e117.
  13. American Psychiatric Association DSM-5. Diagnostic and Statistical Manual of Mental Disorders, Washingt. DC. 2013. p. https://doi.org/10.1176/appi.books. 9780890425596.744053.
  14. Andrade A., Brennecke A., Mallat S., Brown J., Rivadeneira J., Czepiel N., Londrigan L. Genetic Associations between Voltage-Gated Calcium Channels and Psychiatric Disorders // Int. J. Mol. Sci. 2019, V. 20. P. 3537.
  15. Aoki Y., Cortese S. Mitochondrial aspartate/glutamate carrier SLC25A12 and autism spectrum disorder: a meta-analysis // Mol. Neurobiol. 2016. V. 53. P. 1579–88.
  16. Arispe N., Diaz J.C., Simakova O. Abeta ion channels. Prospects for treating Alzheimer’s disease with Abeta channel blockers // Biochim Biophys Acta. 2007. V. 1768. P. 1952–1965.
  17. Arispe N., Rojas E., Pollard H.B. Alzheimer disease amyloid beta protein forms calcium channels in bilayer membranes: blockade by tromethamine and aluminum // Proc. Natl. Acad. Sci. USA. 1993. V. 90. № 2. P. 567–571.
  18. Barbado M., Fablet K., Ronjat M., De Waard M. Gene regulation by voltage-dependent calcium channels // Biochimica et Biophysica Acta. 2009. V. 1793. P. 1096–1104.
  19. Barrett C.F., Tsien R.W. The Timothy syndrome mutation differentially affects voltage- and calcium-dependent inactivation of CaV1.2 L-type calcium channels // Proc. Natl. Acad. Sci. USA 2008. V. 105. P. 2157–2162.
  20. Benarroch E.E. Neuropeptide Y: its multiple effects in the CNS and potential clinical significance // Neurology. 2009. V. 72. P. 1016–1020.
  21. Berger S.M., Bartsch D. The role of L-type voltage gated calcium channels Cav 1.2 and Cav 1.3 in normal and pathological brain function // Cell Tissue Res. 2014. V. 357. № 2. P. 463–476.
  22. Bergmans B.A., De Strooper B. gamma-secretases: from cell biology to therapeutic strategies // Lancet Neurol. 2010. V. 9. P. 215–226.
  23. Berridge M.J. Calcium signalling and Alzheimer’s disease // Neurochem. Res. 2011. V. 36. P. 1149–1156.
  24. Berridge M.J., Bootman M.D., Roderick H.L. Calcium: Calcium signalling: dynamics, homeostasis and remodelling // Nature Reviews Molecular Cell Biology. 2003. V. 4. № 7. P. 517–529.
  25. Berridge M.J. Dysregulation of neural calcium signaling in Alzheimer disease, bipolar disorder and schizophrenia // Prion. 2013. Iss. 1. P. 2–13.
  26. Berridge M.J. Calcium signalling and psychiatric disease: Bipolar disorder and schizophrenia // Cell and Tissue Research. 2014. V. 357. № 2. P. 477–492.
  27. Bezprozvanny I., Hayden M.R. Deranged neuronal calcium signaling and Huntington disease // Biochem. Biophys. Res. Commun. 2004. V. 322. № 4. P. 1310–1317.
  28. Bezprozvanny I., Hiesinger P.R. The synaptic maintenance problem: membrane recycling, Ca2+ homeostasis and late onset degeneration // Mol. Neurodegener. 2013. V. 8. P. 23.
  29. Bezprozvanny I., Mattson M.P. Neuronal calcium mishandling and the pathogenesis of Alzheimer’s disease // Trends Neurosci. 2008. V. 31. № 9. P. 454–463.
  30. Bhandari R., Paliwal J.K., Kuhad A. Neuropsychopathology of Autism Spectrum Disorder: Complex Interplay of Genetic, Epigenetic, and Environmental Factors // Adv. Neurobiol. 2020. V. 24. P. 97–141. https://doi.org/10.1007/978-3-030-30402-7_432006358
  31. Bloom G.S. Amyloid-beta and tau: The trigger and bullet in Alzheimer disease pathogenesis // JAMA Neurol. 2014. V. 71. P. 505–508.
  32. Bojarski L., Pomorski P., Szybinska A., Drab M., Skibinska-Kijek A., Gruszczynska-Biegala J., Kuznicki J. Presenilin-dependent expression of STIM proteins and dysregulation of capacitative Ca2+ entry in familial Alzheimer’s disease // Biochim. Biophys. Acta. 2009. V. 1793 P. 1050–1057.
  33. Bootman M.D., Collins T.J., Peppiatt C.M., Prothero L.S., MacKenzie L., Smet P. De, Travers M., Tovey S.C., Seo J.T., Berridge M.J., Ciccolini F., Lipp P. Calcium signaling - an overview // Sem. in Cell & Developmental Biology. 2001. V. 12. № 1. P. 3–10.
  34. Breitenkamp A.F.S., Matthes J., Nass R.D., Sinzig J., Lehmkuhl G., Nürnberg P., Herzig S. Rare Mutations of CACNB2 Found in Autism Spectrum Disease-A_ected Families Alter Calcium Channel Function // PLoS One. 2014. V. 9. e95579.
  35. Briggs C.A., Chakroborty S., Stutzmann G.E. Emerging pathways driving early synaptic pathology in Alzheimer’s disease // Biochem. Biophys. Res. Commun. 2017 V. 483. № 4. P. 988–997.
  36. Brini M., Calì T., Ottolini D., Carafoli E. Neuronal calcium signaling: function and dysfunction // Cellular and Molecular Life Sciences. 2014. V. 71. № 15. P. 2787–2814.
  37. Burdick K.E., Perez-Rodriguez M., Birnbaum R., Shanahan M., Larsen E., Harper C., Poskus J., Sklar P. A molecular approach to treating cognition in schizophrenia by calcium channel blockade: An open-label pilot study of the calcium-channel antagonist isradipine // Schizophr. Res. Cogn. 2020. V. 21. P. 100180.
  38. Calvo-Rodriguez M., Kharitonova E.K., Bacskai B.J. Therapeutic Strategies to Target Calcium Dysregulation in Alzheimer’s Disease // Cells. 2020. V. 9. № 11. P. 2513
  39. Catterall W.A., Lenaeus M.J., Gamal El-Din T.M. Structure and Pharmacology of Voltage-Gated Sodium and Calcium Channels Review // Annu. Rev. Pharmacol. Toxicol. 2020. V. 60. P. 133–154
  40. Chakroborty S., Stutzmann G.E. Calcium channelopathies and Alzheimer’s disease: Insight into therapeutic success and failures // Eur. J. Pharmacol. 2014. V. 739. P. 83–95.
  41. Chami M. Calcium Signalling in Alzheimer’s Disease: From Pathophysiological Regulation to Therapeutic Approaches // Cells. 2021. V. 10. № 1. P. 140.
  42. Cheng K.T., Ong H.L., Liu X., Ambudkar I.S. Contribution and regulation of TRPC channels in store-operated Ca2+ entry // Curr. Top. Membr. 2013. V. 71. P. 149–79.
  43. Chin D., Means A.R. Calmodulin: a prototypical calcium sensor // Trends in Cell Biology. 2000. V. 10. № 8. 322–8.
  44. Cipriani A., Saunders K., Attenburrow M-J, Stefaniak J., Panchal P., Stockton S., Lane T.A., Tunbridge E.M., Geddes J.R., Harrison P.J. A systematic review of calcium channel antagonists in bipolar disorder and some considerations for their future development // Mol. Psychiatry. 2016. V.21. № 10. P. 1324–1332.
  45. Clapham D.E. Calcium Signaling // Cell. 2007. V. 131. № 6. P. 1047–1058.
  46. Colbourne L., Luciano S., Harrison P.J. Onset and recurrence of psychiatric disorders associated with anti-hypertensive drug classes // Translational Psychiatry. 2021. V. 11. № 1. P. 319.
  47. Cortés-Mendoza J., de León-Guerrero S.D., Pedraza-Alva G., Pérez-Martínez L. Shaping synaptic plasticity: the role of activity mediated epigenetic regulation on gene transcription // Int. J. Dev. Neurosci. 2013. V. 31. № 6. P. 359–69.
  48. Cummings J., Aisen P.S., DuBois B., Frölich L., Jack C.R., Jones R.W., Morris J.C., Raskin J., Dowsett S.A., Scheltens P. Drug development in Alzheimer’s disease: the path to 2025 // Alzheimer’s Research & Therapy. 2016. V. 8. P. 39.
  49. Czarnecka K., Chuchmacz J., Wójtowicz P., Szymański P. Memantine in neurological disorders – schizophrenia and depression // J. Mol. Med. (Berl). 2021. V. 99. № 3. 327–334.
  50. Czeredys M. Dysregulation of Neuronal Calcium Signaling via Store-Operated Channels in Huntington’s Disease // Front. Cell Dev. Biol. 2020. V. 8. P. 611735.
  51. Da Silva P.R., do Nascimento Gonzaga T.K.S., Maia R.E., da Silva B.A. Ionic Channels as Potential Targets for the Treatment of Autism Spectrum Disorder: A Review // Curr. Neuropharmacol. 2022. V. 20. № 10. P. 1834–1849. https://doi.org/10.2174/1570159X19666210809102547
  52. Dabkeviciene D., Jarmalaite S., Bulotiene G.A. Systematic Review of Candidate Genes for Major Depression // Medicina (Kaunas). 2022. V. 58. № 2. P. 285.
  53. Davies P., Maloney A.J. Selective loss of central cholinergic neurons in Alzheimer’s disease // Lancet. 1976. V. 2. 8000: 1403. PMID: 63862. S2CID 43250282.https://doi.org/10.1016/S0140-6736(76)91936-X
  54. Decressac M., Barker R.A. Neuropeptide Y and its role in CNS disease and repair // Exp Neurol. 2012. V. 238. P. 265–272
  55. Donev R., Alawam K. Alterations in gene expression in depression: Prospects for personalize patient treatment // Advances in Protein Chemistry and Structural Biology. 2015. V. 101. P. 97–124.
  56. Dong G., Gross K., Qiao F., Justine Ferguson J., Eduardo A., Callegari E.A., Khosrow Rezvani K., Dong Zhang D., Christian J. Gloeckner C.J., Marius Ueffing M., Hongmin Wang H. Calretinin interacts with huntingtin and reduces mutant huntingtin-caused cytotoxicity // J. Neurochemistry. 2012. V. 123. № 3. P. 437–446.
  57. Dubovsky S.L., Marshall D. Calcium Channel Antagonists for Mood Disorders // J. Clin. Psychopharmacol. 2022. V. 42. № 2. P. 188–197.
  58. Dudek N.L., Dai Y., Muma N.A. Neuroprotective effects of calmodulin peptide 76-121aa: disruption of calmodulin binding to mutant huntingtin // Brain Pathol. 2010. 20. P. 176–89.
  59. Dudek N.L., Dai Y., Muma N.A. Protective effects of interrupting the binding of calmodulin to mutant huntingtin // J. Neuropathol. Exp. Neurol. 2008. V. 67. P. 355–365.
  60. Duman R.S., Voleti B. Signaling pathways underlying the pathophysiology and treatment of depression: Novel mechanisms for rapid-acting agents // Trends in Neurosciences. 2012. V. 35. №1. P. 47–56.
  61. Egorova P.A., Gavrilova A.V., Bezprozvanny I.B. Ataxic Symptoms in Huntington’s Disease Transgenic Mouse Model Are Alleviated by Chlorzoxazone // Front. Neurosci. 2020. V. 14. P. 279.
  62. Fairless R., Williams S.K., Diem R. Dysfunction of neuronal calcium signalling in neuroinflammation and neurodegeneration // Cell Tissue Res. 2014. V. 357. P. 455–462.
  63. Fan T., Hu Y., Xin J., Zhao M., Wang J. Analyzing the genes and pathways related to major depressive disorder via a systems biology approach // Brain Behav. 2020. V. 10: e01502.
  64. Ferreira M.A., O’Donovan M.C., Meng Y.A., Jones I.R., Ruderfer D.M., Jones L. et al. Wellcome Trust Case Control Consortium. Collaborative genome-wide association analysis of 10,596 individuals supports a role for Ankyrin-G (ANK3) and the alpha-1C subunit of the L-type voltage-gated calcium channel (CACNA1C) in bipolar disorder // Nature Genetics. 2008. V. 40. P. 1056–1058.
  65. Ferron L., Koshti S., Zamponi G.W. The life cycle of voltage-gated Ca2+ channels in neurons: an update on the trafficking of neuronal calcium channels // Neuronal Signaling. 2021. V. 5. № 1: NS20200095
  66. Fletcher C.F., Lutz C.M., O’sullivan T.N., Shaughnessy Jr, Jd, Hawkes R., Frankel W.N., Copeland N.G., Jenkins N. Absence epilepsy in tottering mutant mice is associated with calcium channel defects // Cell. 1996. V. 87. P. 607–617.
  67. Fromer M., Pocklington A.J., Kavanagh D.H., Williams H.J., Dwyer S., Gormley P., Georgieva L., Rees E., Palta P., Ruderfer D.M., Carrera N., Humphreys I., Johnson J.S., Roussos P., Barker D.D., Banks E., Milanova V., Grant S.G., Hannon E., Rose S.A., Chambert K., Mahajan M., Scolnick E.M., Moran J.L., Kirov G., Palotie A., McCarroll S.A., Holmans P., Sklar P., Owen M.J., Purcell S.M., O’Donovan MC. De novo mutations in schizophrenia implicate synaptic networks // Nature. 2014. V. 506. № 7487. P. 179–184.
  68. Gargus J.J. Genetic calcium signaling abnormalities in the central nervous system: seizures, migraine, and autism // Ann. N Y Acad Sci. 2009. V. 1151. P. 133–56.
  69. Giacomello M., Oliveros J., Naranjo J., Carafoli E. Neuronal Ca2+ dyshomeostasis in Huntington disease // Prion. 2013. V. 7. № 1. 76–84.
  70. Glenner G., Wong C. Alzheimer’s disease: Initial report of the purification and characterization of a novel cerebrovascular amyloid protein // Biochemical and Biophysical Research Communications. 1984. V. 120. № 3. P. 885–890.
  71. Hamshere M.L., Walters J.T., Smith R., Richards A.L., Green E., Grozeva D., Jones I., Forty L., Jones L., Gordon-Smith K., Riley B., O’Neill F.A., Kendler K.S., Sklar P., Purcell S., Kranz J. Genome-wide significant associations in schizophrenia to ITIH3/4, CACNA1C and SDCCAG8, and extensive replication of associations reported by the Schizophrenia PGC // Molecular Psychiatry. 2012. V. 18. № 6. P. 708–712.
  72. Hanna M.G., Wood N.W., Kullmann D.M. Ion channels and neurological disease: DNA based diagnosis is now possible, and ion channels may be important in common paroxysmal disorders// J. Newol. Newosurg. Psychiatry. 1998. V. 65. P. 427–431.
  73. Hardy J., Allsop D. Amyloid deposition as the central event in the aetiology of Alzheimer’s disease // Trends in Pharmacological Sciences. 1991. V. 12. P. 383–388.
  74. Hardy J., Selkoe D.J. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics // Science. 2002. V. 297. P. 353–356.
  75. Harrison P.J. Tunbridge E.M., Dolphin A.C., Hall J. Voltage-gated calcium channel blockers for psychiatric disorders: genomic reappraisal // The British J. Psychiatry. 2020. V. 216. P. 250–253.
  76. He Z., Guo J.L., McBride J.D., Narasimhan S., Kim H., Changolkar L., Zhang B., Gathagan R.J., Yue C., Dengler C., Stieber A., Nitla M., Coulter D.A., Abel T., Brunden K.R., Trojanowski J.Q., Lee V.M. Amyloid-beta plaques enhance Alzheimer’s brain tau-seeded pathologies by facilitating neuritic plaque tau aggregation // Nat. Med. 2018. V. 24. P. 29–38.
  77. Heck J., Palmeira Do Amaral A.C., Weißbach S., El Khallouqi A., Bikbaev A., Heine M. More than a pore: How voltage-gated calcium channels act on different levels of neuronal communication regulation // Channels (Austin). 2021. V. 15. № 1. P. 322–338.
  78. Iqbal K., Alonso Adel C., Chen S. et al. Tau pathology in Alzheimer disease and other tauopathies // Biochimica et Biophysica Acta. 2005. V. 1739. № 2–3. P. 198–210. PMID: 15615638https://doi.org/10.1016/j.bbadis.2004.09.008.
  79. Jaskova K., Pavlovicova M., Jurkovicova D. Calcium transporters and their role in the development of neuronal disease and neuronal damage // Gen. Physiol. Biophys. 2012. V. 31. № 4. P. 375–382.
  80. Jiang J., Wang Z., Dong Y., Yang Y., Ng C.H., Ma S., Xu Y., Hu H., Hu S. A statistical analysis plan for a randomized clinical trial to evaluate the efficacy and safety of ethosuximide in patients with treatment-resistant depression // Medicine (Baltimore). 2019. V. 98. № 31: e16674
  81. Johannessen Landmark C., Beiske G., Baftiu A., Burns M.L., Johannessen S.I. Experience from therapeutic drug monitoring and gender aspects of gabapentin and pregabalin in clinical practice // Seizure. 2015. V. 28. P. 88–91.
  82. Jurcau A. Molecular Pathophysiological Mechanisms in Huntington’s Disease // Biomedicines. 2022. V. 10. P. 1432.
  83. Kabir Z.D., Lee A.S., Burgdorf C.E., Fischer D.K., Rajadhyaksha A.M., Mok E., Rizzo B., Rice R.C., Singh K., Ota K.T., Gerhard D.M., Schierberl K.C., Glass M.J., Duman R.S., Rajadhyaksha A.M. Cacna1c in the Prefrontal Cortex Regulates De-pression-Related Behaviors via REDD1 // Neuropsychopharmacology. 2017. V. 4. № 10. P. 2032–42.
  84. Kaltenbach L.S. et al. Huntingtin interacting proteins are genetic modifiers of neurodegeneration // PLoS. Genet. 2007. V. 3. e82.
  85. Karran E., Hardy J. A critique of the drug discovery and phase 3 clinical programs targeting the amyloid hypothesis for Alzheimer disease // Ann. Neurol. 2014. V. 76. P. 185–205.
  86. Karran E., Mercken M., De Strooper B. The amyloid cascade hypothesis for Alzheimer’s disease: an appraisal for the development of therapeutics // Nat. Rev. Drug Discov. 2011. V. 10. P. 698–712.
  87. Karttunen K., Karppi P., Hiltunen A., Vanhanen M., Välimäki T., Martikainen J., Valtonen H., Sivenius J., Soininen H., Hartikainen S., Suhonen J., Pirttilä T. Neuropsychiatric symptoms and quality of life in patients with very mild and mild Alzheimer’s disease // International J. Geriatric Psychiatry. 2011. V. 26. № 5. P. 473–482.
  88. Khachaturian Z.S. Calcium, membranes, aging, and Alzheimer’s disease. Introduction and overview // Ann. N Y Acad. Sci. 1989. V. 568. P. 1–4.
  89. Kim J.S., Yue Q., Jen J.C., Nelson S.F., Baloh R.W. Familial migraine with vertigo: no mutations found in CACNA1A // Am. J. Med. Genet.1998. V. 79. № 2. P. 148–151.
  90. Kirchner S.K., Ozkan S., Musil R., Spellmann I., Kannayian N., Falkai P., Rossner M., Papiol S. Polygenic analysis suggests the involvement of calcium signaling in executive function in schizophrenia patients // Eur. Arch. Psychiatry. Clin. Neurosci. 2018. V. 270. № 4. P. 425–431.
  91. Kirov G., Pocklington A.J., Holmans P., Ivanov D., Ikeda M., Ruderfer D., Moran J., Chambert K., Toncheva D., Georgieva L., Grozeva D., Fjodorova M., Wollerton R, Rees E, Nikolov I, van de Lagemaat LN, Bayes A, Fernandez E, Olason P.I., Bottcher Y., Komiyama N.H., Collins M.O., Choudhary J., Stefansson K., Stefansson H., Grant S.G., Purcell S., Sklar P., O’Donovan M.C., Owen M.J. De novo CNV analysis implicates specific abnormalities of postsynaptic signalling complexes in the pathogenesis of schizophrenia // Molecular Psychiatry. 2012. V. 17. P. 142–153.
  92. Kumar D.K.V., Choi S.H., Washicosky K.J., Eimer W.A., Tucker S. et al. Amyloid- peptide protects against microbial infection in mouse and worm models of Alzheimers disease // Science Translational Medicine. 2016. V. 8. 340ra72.
  93. Lai M.C., Lombardo M.V., Baron-Cohen S. Autism // Lancet. 2014. V. 383. 896–910.
  94. Lee S.H., Ripke S., Neale B.M., Faraone S.V., Purcell S.M., Perlis R.H. et al. Cross-Disorder Group of the Psychiatric Genomics Consortium (Collaboration). Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis // The Lancet. 2013. V. 381(9875). P. 1371–1379.
  95. Lerche H., Mitrovic N., Lehmann-Hom F. Ion channel diseases in neurology // Fortschr. Neurol. Psychiatr. 1997. V. 65. №11. P. 481–488
  96. Li Z., Ruan M., Chen J., Fang Y. Major Depressive Disorder: Advances in Neuroscience Research and Translational Applications // Neurosci. Bull. 2021. V. 37. № 6. P. 863–880.
  97. Liao X., Li Y. Genetic associations between voltage-gated calcium channels and autism spectrum disorder: a systematic review // Mol. Brain. 2020. V. 13. № 1. P. 96.
  98. Lipscombe D, Andrade A. Calcium Channel CaVα1 Splice Isoforms – Tissue Specificity and Drug Action // Curr. Mol. Pharmacol. 2015. V. 8. № 1. P. 22–31.
  99. Liu J., Yang A., Zhang Q., Yang G., Yang W., Lei H. et al. Association between genetic variants in SLC25A12 and risk of autism spectrum disorders: An integrated metaanalysis // Am. J. Med. Genet. Part B. Neuropsychiatr. Genet. 2015. V. 168b. P. 236–46.
  100. Liu J., Mo W., Zhang Z., Yu H., Yang A., Qu F., Hu P., Liu Z., Wang S. Single nucleotide polymorphisms in SLC19A1 and SLC25A9 are associated with childhood autism spectrum disorder in the Chinese Han population // J. Mol. Neurosci. 2017. V. 62. P. 262–267.
  101. Loch AA. Schizophrenia, Not a Psychotic Disorder: Bleuler Revisited // Front. Psychiatry. 2019. V. 10. P. 328.
  102. Lorenzon N.M., Beam K.G. Calcium channelopathies // Kidney International. 2000. V. 57. № 3. P. 794–802.
  103. Lory P., Nicole S., Monteil A. Neuronal Cav3 channelopathies: recent progress and perspectives // Pflugers Arch. 2020. V. 472. № 7. P. 831–844.
  104. MacDonald M.E., Ambrose C.M., Duyao M.P., Myers R.H., Lin C., Srinidhi L. et al. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. The Huntington’s Disease Collaborative Research Group // Cell. 1993. V. 72. P. 971–983.
  105. Masini E., Eleonora Loi E., Vega-Benedetti A.-F., Carta M., GDoneddu G., Fadda R., Zavattari P. An Overview of the Main Genetic, Epigenetic and Environmental Factors Involved in Autism Spectrum Disorder Focusing on Synaptic Activity // Int. J. Mol. Sci. 2020. V. 21. P. 8290. https://doi.org/10.3390/ijms21218290
  106. Massachusetts General Hospital. “Human amyloid-beta acts as natural antibiotic in the brain: Alzheimer’s-associated amyloid plaques may trap microbes.” ScienceDaily, 25 May 2016. www.sciencedaily.com/releases/2016/05/160525161351.htm.
  107. Nanou E., Catterall W.A. Calcium Channels, Synaptic Plasticity, and Neuropsychiatric Disease // Neuron. 2018. V. 98. № 3. P. 466–481.
  108. Ng F., Hallam K., Lucas N., Berk M. The role of lamotrigine in the management of bipolar disorder // Neuropsychiatr. Dis. Treat. 2007. V. 3. P. 463–474.
  109. Nguyen R.L., Medvedeva Y.V., Ayyagari T.E., Schmunk G., Gargus J.J. Intracellular calcium dysregulation in autism spectrum disorder: An analysis of converging organelle signaling pathways // BBA – Molecular Cell Research. 2018. V. 1865. P. 1718–1732.
  110. Nicholls D.G. Mitochondria and calcium signaling // Cell Calcium. 2005. V. 38. № 3–4. P. 311–317
  111. Nobis A., Zalewski D., Waszkiewicz N. Peripheral Markers of Depression // J. Clin. Med. 2020. V. 9. №12. P. 3793.
  112. Norkeviciene A., Gocentiene R., Sestokaite A., Sabaliauskaite R., Dabkeviciene D., Jarmalaite S., Bulotiene G. A Systematic Review of Candidate Genes for Major Depression // Medicina (Kaunas). 2022. V. 58. № 2. P. 285.
  113. Ohi K., Sumiyoshi C., Fujino H., Yasuda Y., Yamamori H., Fujimoto M., Shiino T., Sumiyoshi T., Hashimoto R. Genetic Overlap between General Cognitive Function and Schizophrenia: A Review of Cognitive GWASs // Int. J. Mol. Sci. 2018. V. 19. № 12. pii: E3822.
  114. Ortner N.J., Striessnig J. L-type calcium channels as drug targets in CNS disorders // Channels (Austin). 2016. V. 10. № 1. P. 7–13
  115. Palmieri L., Papaleo V., V Porcelli V., Scarcia P., GaitaL., Sacco R., Hager J., Rousseau F., Curatolo P., Manzi B., Militerni R., Bravaccio C., Trillo S., Schneider C., Melmed R., Elia M., Lenti C., Saccani M., Pascucci T., Puglisi-Allegra S., Reichelt K.-L., Persico A. M. Altered calcium homeostasis in autism-spectrum disorders: evidence from biochemical and genetic studies of the mitochondrial aspartate/glutamate carrier AGC1 // Mol. Psychiatry. 2010. V. 15. P. 38–52.
  116. Pavlova M.B., Smagin D.A., Kudryavtseva N.N., Dyuzhikova N.A. Changes in the expression of genes, associated with calcium processes, in the hippocampus of mice under the influence of chronic social defeat stress // Mol. Biol. 2023. In print.
  117. Pchitskaya E., Popugaeva E., Bezprozvanny I. Calcium signaling and molecular mechanisms underlying neurodegenerative diseases // Cell Calcium. 2018. V. 70. P. 87–94.
  118. Pinggera A., Mackenroth L., Rump A., Schallner J., Beleggia F., Wollnik B., Striessnig J. New gain-of-function mutation shows CACNA1D as recurrently mutated gene in autism spectrum disorders and epilepsy // Hum. Mol. Genet. 2017. V. 26. P. 2923–2932.
  119. Pochet R. Calcium: The Molecular Basis of Calcium Action in Biology and Medicine. Kluwer Academic Publishers. 2000. 732 p.
  120. Popugaeva E., Pchitskaya E., Bezprozvanny I. Dysregulation of neuronal calcium homeostasis in Alzheimer’s disease – A therapeutic opportunity? // Biochem. Biophys. Res. Commun. 2017. V. 483. P. 998–1004.
  121. Pourtavakoli A., Ghafouri-Fard S. Calcium signaling in neurodevelopment and pathophysiology of autism spectrum disorders // Mol. Biol. Rep. 2022. V. 49. P. 10811–10823. https://doi.org/10.1007/s11033-022-07775-6
  122. Prabhavalkar K.S., Poovanpallil N.B., Bhatt L.K. Management of bipolar depression with lamotrigine: An antiepileptic mood stabilizer // Front. Pharmacol. 2015. V. 6. P. 242.
  123. Purcell S.M., Moran J.L., Fromer M., Ruderfer D., Solovieff N., Roussos P., O’Dushlaine C., Chambert K., Bergen S.E., Kahler A., Duncan L., Stahl E., Genovese G., Fernandez E., Collins M.O., Komiyama N.H., Choudhary J.S., Magnusson P.K., Banks E., Shakir K., Garimella K., Fennell T., DePristo M., Grant S.G., Haggarty S.J., Gabriel S., Scolnick E.M., Lander E.S., Hultman C.M., Sullivan P.F., McCarroll S.A., Sklar P. A polygenic burden of rare disruptive mutations in schizophrenia // Nature. 2014. V. 506. №7487. P. 185–190.
  124. Purves D., Augustine G., Fitzpatrick D., Hall W., LaMantia A.S., White L. Neuroscience. Massachusetts: Sinauer Associates. 2012. P. 95, 147, 148.
  125. Qiu S., Qiu Y., Li Y. et al. Genetics of autism spectrum disorder: an umbrella review of systematic reviews and meta-analyses // Transl. Psychiatry. 2022 V. 12. P. 249. https://doi.org/10.1038/s41398-022-02009-6
  126. Ripke S., Neale B.M., Corvin A., Walters J.T., Farh K.H., Holmans P.A. et al. Biological insights from 108 schizophrenia-associated genetic loci // Nature. 2014. V. 511. № 7510. P. 421–427.
  127. Robison A.J. Emerging role of CaMKII in neuropsychiatric disease // Trends Neurosci. 2014. V. 37. № 11. P. 653–62. Epub 2014 Jul 30.https://doi.org/10.1016/j.tins.2014.07.001
  128. Ross C.A., Margolis R.L., Reading S.A.J., Pletnikov M., Coyle J.T. Neurobiology of schizophrenia // Neuron. 2006. V. 52. P. 139–153.
  129. Sałaciak K., Koszałka A., Z˙mudzka E., Pytka K. The Calcium/Calmodulin-Dependent Kinases II and IV as Therapeutic Targets in Neurodegenerative and Neuropsychiatric Disorders // Int. J. Mol. Sci. 2021. V. 22. P. 4307. https://doi.org/10.3390/ijms22094307
  130. Salińska E., Łazarewicz J.W. Role of calcium in physiology and pathology of neurons // Postepy Biochem. 2012. V. 58. № 4. P. 403–417.
  131. Sandoval A., Duran P., Gandini M.A., Andrade A., Almanza A., Kaja S., Felix R. Regulation of L-type CaV1.3 channel activity and insulin secretion by the cGMP–PKG signaling pathway // Cell Calcium. 2017. V. 66. P. 1–9.
  132. Sarkar A., Irwin M., Singh A., Riccetti M., Singh A. Alzheimer’s disease: The silver tsunami of the 21st century // Neural Regen. Res. 2016. V. 11. № 5. P. 693–697.
  133. Schmunk G., Gargus J.J. Channelopathy pathogenesis in autism spectrum disorders // Front. Genet. 2013. V. 4. P. 222.
  134. Selkoe D.J., Hardy J. The amyloid hypothesis of Alzheimer’s disease at 25 years // EMBO Mol. Med. 2016. V. 8. P. 595–608.
  135. Sinnen B.L., Bowen A.B., Gibson E.S., Kennedy M.J. Local and Use-Dependent Effects of beta-Amyloid Oligomers on NMDA Receptor Function Revealed by Optical Quantal Analysis // J. Neurosci. 2016. V. 36. P. 11532–11543.
  136. Sofuoglu M., Rosenheck R., Petrakis I. Pharmacological treatment of comorbid PTSD and substance use disorder: Recent progress // Addict. Behav. 2014. V. 39. P. 428–433.
  137. Soscia S.J., Kirby J.E., Washicosky K.J., Tucker S.M., Ingelsson M. et al. The Alzheimer’s Disease-Associated Amyloid β-Protein Is an Antimicrobial Peptide // PLoS One. 2010. 5. e9505
  138. Splawski I., Timothy K.W., Sharpe L.M., Decher N., Kumar P., Bloise R., Napolitano C., Schwartz P.J., Joseph R.M., Condouris K. et al. CaV1.2 Calcium Channel Dysfunction Causes a Multisystem Disorder Including Arrhythmia and Autism // Cell. 2004. V. 119. P. 19–31.
  139. Splawski I., Yoo D.S., Stotz S.C., Cherry A., Clapham D.E., Keating M.T. CACNA1H Mutations in Autism Spectrum Disorders // J. Biol. Chem. 2006. V. 281. P. 22085–22091.
  140. Stacey D., Cohen-Woods S., Toben C., Arolt V., Dannlowski U., Baune B.T. Evidence of increased risk for major depressive disorder in individuals homozygous for the high-expressing 5-HTTLPR/rs25531 (LA) allele of the serotonin transporter promoter // Psychiatr. Genet. 2013. V .23. P. 222–223.
  141. Stefani A., Spadoni F., Siniscalchi A., Bernardi G. Lamotrigine inhibits Ca2+ currents in cortical neurons: Functional implications // Eur. J. Pharmacol. 1996. V. 307. P.113–116.
  142. Stevens F.C. Calmodulin: an introduction // Canadian J. Biochemistry and Cell Biology. 1983. V. 61. № 8. P. 906–10.
  143. Stratton M.M., Chao L.H., Schulman H., Kuriyan J. Structural studies on the regulation of Ca2+/calmodulin dependent protein kinase II // Curr. Opin. Struct. Biol. 2013. V. 23. №2. P. 292–301.
  144. Sun S., Zhang H., Liu J., Popugaeva E., Xu N.J., Feske S., White C.L. 3rd, Bezprozvanny I. Reduced Synaptic STIM2 Expression and Impaired Store-Operated Calcium Entry Cause Destabilization of Mature Spines in Mutant Presenilin Mice // Neuron. 2014. V. 82. P. 79–93.
  145. Swayne L.A., Chen L., Hameed S., Barr W., Charlesworth E., Colicos M.A., Zamponi G.W., Braun J.E. Crosstalk between huntingtin and syntaxin 1A regulates N-type calcium channels // Mol. Cell. Neurosci. 2005. V. 30. 339–351.
  146. Tabaton M., Tamagno E. The molecular link between beta- and gamma-secretase activity on the amyloid beta precursor protein // Cell Mol. Life Sci. 2007. V. 64. № 17. P. 2211–2218.
  147. Takata A., Miyake N., Tsurusaki Y. et al. Integrative analyses of de novo mutations provide deeper biological insights into autism spectrum disorder // Cell Rep. 2018. V. 22. P. 734–747
  148. Tang T.-S., Tu H., Chan E.Y., Maximov A., Wang Z., Wellington C.L., Hayden M.R., Bezprozvanny I. Huntingtin and huntingtin-associated protein 1 influence neuronal calcium signaling mediated by inositol-(1,4,5) triphosphate receptor type 1 // Neuron. 2003. V. 39. P. 227–239.
  149. Toescu E.C., Verkhratsky A. The importance of being subtle: small changes in calcium homeostasis control cognitive decline in normal aging // Aging Cell. 2007. V. 6. P. 267–273
  150. Tong B.C.-T., Wu A.J., Li M., Cheung K.-H. Calcium signaling in Alzheimer’s disease & therapies // Biochim. Biophys. Acta Mol. Cell Res. 2018. 1865. P. 1745–1760.
  151. Vallipuram J., Grenville J., Crawford D.A. The E646D-ATP13A4 mutation associated with autism reveals a defect in calcium regulation. // Cell. Mol. Neurobiol. 2010. V. 30. P. 233–246.
  152. Venkiteswaran G., Hasan G. Intracellular Ca2+ signaling and store-operated Ca2+ entry are required in Drosophila neurons for flight. //Proceedings of the National Academy of Sciences of the United States of America. 2009. V. 106. № 25. P. 10326–10331.
  153. Vonsattel J.P., Difiglia M. Hantinton Desease // J. Neuropathol. Exp. Neurol. 1998. V. 57. № 5. P. 369–384.
  154. Walker F.O. Huntington’s disease // Lancet. 2007. V. 369. P. 218–228. https://doi.org/10.1016/S0140-6736(07)60111-1
  155. Wang S., Yabuki Y., Matsuo K., Xu J., Izumi H., Sakimura K., Saito T., Saido T.C., Fukunaga K. T-type calcium channel enhancer SAK3 promotes dopamine and serotonin releases in the hippocampus in naive and amyloid precursor protein knock-in mice // PLoS One. 2018. V. 13. e0206986.
  156. Ward M.W., Huber H.J., Weisova P., Duessmann H., Nicholls D.G., Prehn J.H.M. Mitochondrial and plasma membrane potential of cultured cerebellar neurons during glutamate induced necrosis, apoptosis and tolerance // J. Neuroscience. 2007. V. 27. № 31. P. 8238–8249.
  157. Weiergräber M., Henry M., Radhakrishna K., Hescheler J., Schneider T. Hippocampal seizure resistance and reduced neuronal excitotoxicity in mice lacking the Cav2.3 E/R-type voltage-gated calcium channel // J. Neurophysiol. 2007. V. 97. V. 3660–3669.
  158. Wiener H., Klei L., Calkins M., Wood J., Nimgaonkar V., Gur R., Bradford L.D., Richard J., Edwards N., Savage R., Kwentus J., Allen T., McEvoy J., Santos A., Gur R., Devlin B., Go R. Principal components of heritability from neurocognitive domains differ between families with schizophrenia and control subjects // Schizophr. Bull. 2013. V. 39. № 2. P. 464–471.
  159. Wu G., Feder A., Wegener G., Bailey C., Saxena S., Charney D., Mathé A.A. Central functions of neuropeptide Y in mood and anxiety disorders // Expert Opin. Ther. Targets. 2011. V. 15. № 11. P. 1317–1331.
  160. Wu J., Ryskamp D.A., Liang X., Egorova P., Zakharova O., Hung G., Bezprozvanny I. Enhanced Store-Operated Calcium Entry Leads to Striatal Synaptic Loss in a Huntington’s Disease Mouse Model // The J. Neuroscience. 2016b. V. 36. P. 125–141.
  161. Wu J., Shih H.P., Vigont V., Hrdlicka L., Diggins L., Singh C., Mahoney M., Chesworth R., Shapiro G., Zimina O., Chen X., Wu Q., Glushankova L., Ahlijanian M., Koenig G., Mozhayeva G.N., Kaznacheyeva E., Bezprozvanny I. Neuronal store-operated calcium entry pathway as a novel therapeutic target for Huntington’s disease treatment // Chem. Biol. 2011. V. 18. P. 777–793.
  162. Xu J., Yabuki Y., Yu M., Fukunaga K. T-type calcium channel enhancer SAK3 produces anti-depressant-like effects by promoting adult hippocampal neurogenesis in olfactory bulbectomized mice // J. Pharmacol. Sci. 2018. V. 137. P. 333–341.
  163. York B., Li F., Lin F., Marcelo K.L., Mao J., Dean A. et al. Pharmacological inhibition of CaMKK2 with the selective antagonist STO-609 regresses NAFLD // Sci. Rep. 2017. V. 7. № 1. P. 11793.
  164. Zai G., Robbins T.W., Sahakian B.J., Kennedy J.L. A review of molecular genetic studies of neurocognitive deficits in schizophrenia // Neurosci. Biobehav. Rev. 2017. V. 72. P. 50–67.
  165. Zamponi G.W. Targeting voltage-gated calcium channels in neurological and psychiatric diseases // Nat. Rev. Drug Discov. 2016. V. 15. P. 19–34.
  166. Zeidan-Chulia F., Rybarczyk-Filho J.L., Salmina A.B. et al. Exploring the multifactorial nature of autism through computational systems biology: calcium and the rho GTPase RAC1 under the spotlight // NeuroMolecular. Med. 2013. V. 15. № 2. P. 364–83
  167. Zeron M.M., Hansson O., Chen N., Wellington C.L., Leavitt B.R., Brundin P., Hayden M.R., Raymond L.A. Increased sensitivity to N-methyl-D-aspartate receptormediated excitotoxicity in a mouse model of Huntington’s disease // Neuron. 2002. V. 33. P. 849–860.
  168. Zhang H., Sun S., Wu L., Pchitskaya E., Zakharova O., Fon Tacer K., Bezprozvanny I. Store-Operated Calcium Channel Complex in Postsynaptic Spines: A New Therapeutic Target for Alzheimer’s Disease Treatment // The J. Neuroscience. 2016a. V. 36. P. 11837–11850.
  169. Zhang H., Wu L., Pchitskaya E., Zakharova O., Saito T., Saido T., Bezprozvanny I. Neuronal Store-Operated Calcium Entry and Mushroom Spine Loss in Amyloid Precursor Protein Knock-In Mouse Model of Alzheimer’s Disease // J. Neurosci. 2015b V. 35. P. 13275–13286.
  170. Zuccato C., Valenza M., Cattaneo E. Molecular Mechanisms and Potential Therapeutical Targetsin Huntington’s // Physiol. Rev. 2010. V. 90. № 3. P. 905–981.

Copyright (c) 2023 Н.А. Дюжикова, М.Б. Павлова

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies