Group B Vitamins: From Homeostasis to Pathogenesis and Treatment of Multiple Sclerosis

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Abstract—It is well known that vitamins are essential micronutrients for the normal functioning of all body systems and must be supplied in sufficient quantities with food. The role of vitamins produced by the gut microbiota for host health is largely undefined. The review discusses the properties of eight water-soluble B vitamins, their complex effects on the functioning of the nervous system. Attention is paid to a little-studied issue - the synthesis of B vitamins by the intestinal microbiota and its role in vitamin deficiency in the body. It is proposed that interrelated factors – “Western diet”, altered composition (dysbiosis) of the intestinal microbiota and deficiency of B vitamins are involved in the pathogenesis of multiple sclerosis, a severe autoimmune demyelinating disease that affects people of working age. The available studies on the evaluation of the level of B vitamins in patients with multiple sclerosis and the use of high doses of these vitamins for the treatment of progressive forms of multiple sclerosis are presented. In addition, the idea of the possibility of using probiotic bacteria producing B vitamins in the treatment of multiple sclerosis is being put forward.

About the authors

I. N. Abdurasulova

Institute of Experimental Medicine

Author for correspondence.
Email: i_abdurasulova@mail.ru
Russia, 197022, St. Petersburg

A. V. Dmitriev

Institute of Experimental Medicine

Author for correspondence.
Email: admitriev10@yandex.ru
Russia, 197022, St. Petersburg

References

  1. Абдурасулова И.Н., Клименко В.М. Гетерогенность механизмов повреждения нервных клеток при демиелинизирующих аутоиммунных заболеваниях ЦНС // Росс. Физиол. Журн. им. И.М. Сеченова. 2010. Т. 96. № 1. С. 50.
  2. Абдурасулова И.Н., Клименко В.М. Роль иммунных и глиальных клеток в процессах нейродегенерации // Медицинский академический журн. 2011. Т. 1. № 1. С. 12. https://doi.org/10.17816/MAJ11112-29
  3. Абдурасулова И.Н., Тарасова Е.А., Мацулевич А.В. и др. Влияние бифидобактерий в составе кишечной микробиоты на течение рассеянного склероза // Проблемы медицинской микологии. 2022. Т. 24. № 2. С. 38.
  4. Абдурасулова И.Н. Роль микробиоты кишечника в патогенезе рассеянного склероза. Часть 1. Клинические и экспериментальные доказательства вовлечения микробиоты кишечника в развитие рассеянного склероза // Медицинский академический журн. 2022. Т. 22. № 2. С. 9. https://doi.org/10.17816/MAJ108241
  5. Бисага Г.Н., Одинак М.М., Бойко А.Н., Мельник Ю.Б., Попова Н.Ф. Возможности лечения обострений рассеянного склероза без применения кортикостероидов: роль метаболической и антиоксидантной терапии // Журн. Неврологии и Психиатрии им. С.С. Корсакова. 2011. Т. 111. № 2. С. 44.
  6. Громова О.А., Торшин И.Ю., Прокопович О.А. Синергидные нейропротекторные эффекты тиамина, пиридоксина и цианокобаламина в рамках протеома человека // Consilium Medicum. Неврология и Ревматология (Прил.). 2016. Т. 2. С. 76.
  7. Нормы физиологических потребностей в энергии и пищевых веществах для различных групп населения Российской Федерации (утв. Федеральной службой по надзору в сфере защиты прав потребителей и благополучия человека) // Методические рекомендации (МР 2.3.1.0253-21) от 22.07.2021 г.
  8. Abdou E., Hazell A.S. Thiamine deficiency: An update of pathophysiologic mechanisms and future therapeutic considerations // Neurochem. Res. 2015. V. 40. № 2. P. 353. https://doi.org/10.1007/s11064-014-1430-z
  9. Albert M.J., Mathan V.I., Baker S.J. Vitamin B12 synthesis by human small intestinal bacteria // Nature. 1980. V. 283. № 5749. P. 781. https://doi.org/10.1038/283781a0
  10. Anagnostouli M., Livaniou E., Nyalala J.O. et al. Cerebrospinal fluid levels of biotin in various neurological disorders // Acta Neurol. Scand. 1999. V. 99. № 6. P. 387. https://doi.org/10.1111/j.1600-0404.1999.tb07369.x
  11. Anderson B.B., Scattoni M., Perry G.M. et al. Is the flavin-deficient red blood cell common in Maremma, Italy, an important defense against malaria in this area? // Am. J. Hum. Genet. 1994. V. 55. № 5. P. 975.
  12. Anzalone S., Vetreno R.P., Ramos R.L., Savage L.M. Cortical cholinergic abnormalities contribute to the amnesic state induced by pyrithiamine-induced thiamine deficiency in the rat // Eur. J. Neurosci. 2010. V. 32. № 5. P. 847. https://doi.org/10.1111/j.1460-9568.2010.07358.x
  13. Aring C.D., Spies T.D. Vitamin B deficiency and nervous disease // J. Neurol. Psychiatry. 1939. V. 2. № 4. P. 335. https://doi.org/10.1001/jama.1960.73020300005019c
  14. Arumugam M., Raes J., Pelletier E. et al. Enterotypes of the human gut microbiome // Nature. 2011. V. 473. P. 174. https://doi.org/10.1038/nature09944
  15. Ascherio A., Munger K. L., White R. et al. Vitamin D as an early predictor of multiple sclerosis activity and progression // JAMA Neurol. 2014. V. 71. № 3. P. 306. https://doi.org/10.1001/jamaneurol.2013.5993
  16. Ascherio A., Munch M. Epstein–Barr virus and multiple sclerosis // Epidemiology. 2000. V. 11. № 2. P. 220. https://doi.org/10.1097/00001648-2000030000-00023
  17. Ashoori M., Saedisomeolia A. Riboflavin (vitamin B2) and oxidative stress: a review // Br. J. Nutr. 2014. V. 111. № 11. P. 1985. https://doi.org/10.1017/S0007114514000178
  18. Asrar F.M., O’Connor D.L. Bacterially synthesized folate and supplemental folic acid are absorbed across the large intestine of piglets // J. Nutr. Biochem. 2005. V. 16. № 10. P. 587. https://doi.org/10.1016/j.jnutbio.2005.02.006
  19. Aufreiter S., Gregory J.F.3rd, Pfeiffer C.M. et al. Folate is absorbed across the colon of adults: evidence from cecal infusion of (13)C-labeled [6S]-5-formyltetrahydrofolic acid // Am. J. Clin. Nutr. 2009. V. 90. № 1. P. 116. https://doi.org/10.3945/ajcn.2008.27345
  20. Au-Yeung K.K.W., Yip J.C.W., Siow Y.L., Karmin O. Folic acid inhibits homocysteine-induced superoxide anion production and nuclear factor kappa B activation in macrophages // Can. J. Physiol. Pharmacol. 2006. V. 84. № 1. P. 141. https://doi.org/10.1139/Y05-136
  21. Awuchi C.G., Igwe V.S., Amagwula I.O. Nutritional diseases and nutrient toxicities: a systematic review of the diets and nutrition for prevention and treatment // Int. J. Adv. Acad. Res. 2020. V. 6. № 1. P. 1.
  22. Bâ A. Metabolic and structural role of thiamine in nervous tissues // Cell. Mol. Neurobiol. 2008. V. 28. № 7. P. 923. https://doi.org/10.1007/s10571-008-9297-7
  23. Badawy A.A. Kynurenine Pathway of Tryptophan Metabolism: Regulatory and Functional Aspects // Int. J. Tryptophan Res. 2017. V. 10. P. 1178646917691938. https://doi.org/10.1177/1178646917691938
  24. Baggott J.E., Tamura T. Folate-dependent purine nucleotide biosynthesis in humans // Adv. Nutr. 2015. V. 6. № 5. P. 564. https://doi.org/10.3945/an.115.008300
  25. Bagur M.J., Murcia M.A., Jiménez-Monreal A.M. et al. Influence of diet in multiple sclerosis: A systematic review // Adv. Nutr. 2017. V. 8. № 3. P. 463. https://doi.org/10.3945/an.116.014191
  26. Basu T.K., Mann S. Vitamin B-6 normalizes the altered sulfur amino acid status of rats fed diets containing pharmacological levels of niacin without reducing niacin’s hypolipidemic effects // J. Nutr. 1997. V. 127. № 1. P. 117. https://doi.org/10.1093/jn/127.1.117
  27. Bates C. Riboflavin // Int. J. Vitam. Nutr. Res. 1993. V. 63. № 4. P. 274.
  28. Besler H.T., Comoğlu S. Lipoprotein oxidation, plasma total antioxidant capacity and homocysteine level in patients with multiple sclerosis // Nutr. Neurosci. 2003. V. 6. № 3. P. 189. https://doi.org/10.1080/1028415031000115945
  29. Biesalski H.K. Nutrition meets the microbiome: micronutrients and the microbiota // Ann. N.Y. Acad. Sci. 2016. V. 1372. № 1. P. 53. https://doi.org/10.1111/nyas.13145
  30. Birnbaum G., Stulc J. High Dose Biotin As Treatment for Progressive Multiple Sclerosis // Mult. Scler. Relat. Disord. 2017. V. 18. P. 141. https://doi.org/10.1016/j.msard.2017.09.030
  31. Bitarafan S., Harirchian M.-H., Nafissi S. et al. Dietary intake of nutrients and its correlation with fatigue in multiple sclerosis patients // Iran. J. Neurol. 2014. V. 13. № 1. P. 28.
  32. Bitarafan S., Karimi E., Moghadasi A.N. et al. Impact of supplementation with “multivitamin-mineral” specially formulated to improve fatigue and inflammatory state in patients with multiple sclerosis: A triple-blind, randomized, placebo-controlled trial // Curr. J. Neurol. 2020. V. 19. № 4. P. 180. https://doi.org/10.18502/cjn.v19i4.5545
  33. Blad C.C., Tang C., Offermanns S. G protein-coupled receptors for energy metabolites as new therapeutic targets // Nat. Rev. Drug Discov. 2012. V. 11. № 8. P. 603. https://doi.org/10.1038/nrd3777
  34. Blaut M., Clavel T. Metabolic diversity of the intestinal microbiota: Implication for health and disease // J. Nutr. 2007. V. 137. P. 751. https://doi.org/10.1093/jn/137.3.751S
  35. Blom H.J., Shaw G.M., den Heijer M., Finnell R.H. Neural tube defects and folate: case far from closed // Nat. Rev. Neurosci. 2006. V. 7. № 9. P. 724. https://doi.org/10.1038/nrn1986
  36. Bourquin F., Capitani G., Grütter M.G. PLP-dependent enzymes as entry and exit gates of sphingolipid metabolism // Protein Sci. 2011. V. 20. № 9. P. 1492. https://doi.org/10.1002/pro.679
  37. Braniste V., Al-Asmakh M., Kowal C. et al. The gut microbiota influences blood brain barrier permeability in mice // Sci. Transl. Med. 2014. V. 6. № 263. P. 263ra158. https://doi.org/10.1126/scitranslmed.3009759
  38. Brestoff J.R., Artis D. Commensal bacteria at the interface of host metabolism and the immune system // Nat. Immunol. 2013. V. 14. № 7. P. 676. https://doi.org/10.1038/ni.2640
  39. Brosnan M.E., MacMillan L., Stevens J.R., Brosnan J.T. Division of labour: how does folate metabolism partition between one-carbon metabolism and amino acid oxidation? // Biochem. J. 2015. V. 472. № 2. P. 135. https://doi.org/10.1042/BJ20150837
  40. Butterworth R.F. Thiamin deficiency and brain disorders // Nutr. Res. Rev. 2003. V. 16. № 2. P. 277. https://doi.org/10.1079/NRR200367
  41. Calderón-Ospina C.A., Nava-Mesa M.O. B Vitamins in the nervous system: Current knowledge of the biochemical modes of action and synergies of thiamine, pyridoxine, and cobalamin // CNS Neurosci. Ther. 2020. V. 26. P. 5. https://doi.org/10.1111/cns.13207
  42. Campbell G., Mahad D.J. Mitochondrial dysfunction and axon degeneration in progressive multiple sclerosis // FEBS Lett. 2018. V. 592. P. 113. https://doi.org/10.1002/1873-3468.13013
  43. Carrothers J.M., York M.A., Brooker S.L. et al. Fecal Microbial Community Structure Is Stable over Time and Related to Variation in Macronutrient and Micronutrient Intakes in Lactating Women // J. Nutr. 2015. V. 145. № 10. P. 2379. https://doi.org/10.3945/jn.115.211110
  44. Castagnet S., Blasco H., Vourc’h P., Andres C.R., Praline J. Chronic demyelinating polyneuropathy and B6 hypervitaminosis // Rev. Med. Interne. 2010. V. 31. № 12. e1. https://doi.org/10.1016/j.revmed.2010.03.457
  45. Castro-Quezada I., Román-Viñas B., Serra-Majem L. The mediterranean diet and nutritional adequacy: A review // Nutrients. 2014. V. 6. № 1. P. 231. https://doi.org/10.3390/nu6010231
  46. Celis A.I., Relman D.A. Competitors versus Collaborators: Micronutrient Processing by Pathogenic and Commensal Human-Associated Gut Bacteria // Mol. Cell. 2020. V. 78. № 4. P. 570. https://doi.org/10.1016/j.molcel.2020.03.032
  47. Clemente J.C., Pehrsson E.C., Blaser M.J. et al. The microbiome of uncontacted Amerindians // Sci. Adv. 2015. V. 1. № 3. e1500183. https://doi.org/10.1126/sciadv.1500183
  48. Collongues N., Kuhle J., Tsagkas C. et al. Biomarkers of treatment response in patients with progressive multiple sclerosis treated with high-dose pharmaceutical-grade biotin (MD1003) // Brain Behav. 2021. V. 11. № 2. e01998. https://doi.org/10.1002/brb3.1998
  49. Cordain L., Eaton S.B., Sebastian A. et al. Origins and evolution of the western diet: Health implications for the 21st century // Am. J. Clin. Nutr. 2005. V. 81. № 2. P. 341. https://doi.org/10.1093/ajcn.81.2.341
  50. Costantini A., Nappo A., Pala M.I., Zappone A. High dose thiamine improves fatigue in multiple sclerosis // BMJ Case Rep. 2013. bcr2013009144. https://doi.org/10.1136/bcr-2013-009144
  51. Costliow Z.A., Degnan P.H. Thiamine Acquisition Strategies Impact Metabolism and Competition in the Gut Microbe Bacteroides thetaiotaomicron // mSystems. 2017. V. 2. № 5. e00116-17. https://doi.org/10.1128/mSystems.00116-17
  52. Couloume L., Barbin L., Leray E. et al. High-dose biotin in progressive multiple sclerosis: A prospective study of 178 patients in routine clinical practice // Mult. Scler. 2020. V.26. № 14. P. 1898. https://doi.org/10.1177/1352458519894713
  53. Cree B.A.C., Cutter G., Wolinsky J.S. et al. SPI2 investigative teams. Safety and efficacy of MD1003 (high-dose biotin) in patients with progressive multiple sclerosis (SPI2): a randomised, double-blind, placebo-controlled, phase 3 trial // Lancet Neurol. 2020. V. 19. № 12. P. 988. https://doi.org/10.1016/S1474-4422(20)30347-1
  54. Das P., Babaei P., Nielsen J. Metagenomic analysis of microbe-mediated vitamin metabolism in the human gut microbiome // BMC Genomics. 2019. V. 20. № 1. P. 208. https://doi.org/10.1186/s12864-019-5591-7
  55. Degnan P.H., Barry N.A., Mok K.C., Taga M.E., Goodman A.L. Human gut microbes use multiple transporters to distinguish vitamin B12 analogs and compete in the gut // Cell Host Microbe. 2014. V. 15. № 1. P. 47. https://doi.org/10.1016/j.chom.2013.12.007
  56. Degnan P.H., Taga M.E., Goodman A.L. Vitamin B12 as a modulator of gut microbial ecology // Cell Metabolism. 2014. V. 20. № 5. P. 769. https://doi.org/10.1016/j.cmet.2014.10.002
  57. de la Rubia Ortí J.E., Cuerda-Ballester M., Drehmer E. et al. Vitamin B1 Intake in Multiple Sclerosis Patients and its Impact on Depression Presence: A Pilot Study // Nutrients. 2020. V. 12. № 9. P. 2655. https://doi.org/10.3390/nu12092655
  58. Demas A., Cochin J.-P., Hardy C. et al. Tardive reactivation of progressive multiple sclerosis during treatment with biotin // Neurol. Ther. 2020. V. 9. № 1. P. 181. https://doi.org/10.1007/s40120-019-00175-2
  59. den Besten G., van Eunen K., Groen A.K. et al. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism // J. Lipid Res. 2013. V. 54. № 9. P. 2325. https://doi.org/10.1194/jlr.R036012
  60. Depeint F., Bruce W.R., Shangari N., Mehta R., O’Brien P.J. Mitochondrial function and toxicity: Role of the B vitamin family on mitochondrial energy metabolism // Chem. Biol. Interact. 2006. V. 163. № 1–2. P. 94. https://doi.org/10.1016/j.cbi.2006.04.014
  61. Depeint F., Bruce W.R., Shangari N., Mehta R., O’Brien P.J. Mitochondrial function and toxicity: Role of B vitamins on the one-carbon transfer pathways // Chem. Biol. Interact. 2006. V. 163. № 1–2. P. 113. https://doi.org/10.1016/j.cbi.2006.05.010
  62. Dinan T.G., Cryan J.F. The microbiome-gut-brain axis in health and disease // Gastroenterol. Clin. North. Am. 2017. V. 46. № 1. P. 77. https://doi.org/10.1016/j.gtc.2016.09.007
  63. di Salvo M.L., Contestabile R., Safo M.K. Vitamin B6 salvage enzymes: mechanism, structure and regulation // Biochim. Biophys. Acta. 2011. V. 1814. № 11. P. 1597. https://doi.org/10.1016/j.bbapap.2010.12.006
  64. Du X., Yang Y., Zhan X. et al. Vitamin B6 prevents excessive inflammation by reducing accumulation of sphingosine-1-phosphate in a sphingosine-1-phosphate lyase–dependent manner // J. Cell. Mol. Med. 2020. V. 24. № 22. P. 13129. https://doi.org/10.1111/jcmm.15917
  65. Eckburg P.B., Bik E.M., Bernstein C.N. et al. Diversity of the human intestinal microbial flora // Science. 2005. V. 308. № 5728. P. 1635. https://doi.org/10.1126/science.1110591
  66. el-Hindi H.M., Amer H.A. Effect of thiamine, magnesium, and sulfate salts on growth, thiamine levels, and serum lipid constituents in rats // J. Nutr. Sci. Vitaminol (Tokyo). 1989. V. 35. № 5. P. 505. https://doi.org/10.3177/jnsv.35.505
  67. Elo P., Li X.-G., Liljenbäck H. et al. Efficacy and tolerability of folate aminopterin therapy in a rat focal model of multiple sclerosis // J. Neuroinflammation. 2021. V. 18. № 1. P. 30. https://doi.org/10.1186/s12974-021-02073-7
  68. Engevik M.A., Morra C.N., Röth D. et al. Microbial metabolic capacity for intestinal folate production and modulation of host folate receptors // Front. Microbiol. 2019. V. 10. P. 2305. https://doi.org/10.3389/fmicb.2019.02305
  69. Espiritu A.I., Remalante–Rayco P.P.M. High-dose biotin for multiple sclerosis: A systematic review and meta-analyses of randomized controlled trials // Mult. Scler. Rel. Disord. 2021. V. 55. P. 103159. https://doi.org/10.1016/ j.msard.2021.103159
  70. Fangmann D., Theismann E.-M., Türk K. et al. Targeted Microbiome Intervention by Microencapsulated Delayed-Release Niacin Beneficially Affects Insulin Sensitivity in Humans // Diabetes Care. 2018. V. 41. № 3. P. 398. https://doi.org/10.2337/dc17-1967
  71. Frame L.A., Costa E., Jackson S.A. Current explorations of nutrition and the gut microbiome: a comprehensive evaluation of the review literature // Nutr. Rev. 2020. V. 78. № 10. P. 798. https://doi.org/10.1093/nutrit/nuz106
  72. Francini-Pesenti F., Brocadello F., Famengo S., Nardi M., Caregaro L. Wernicke’s encephalopathy during parenteral nutrition // JPEN J. Parenter. Enteral. Nutr. 2007. V. 31. № 1. P. 69. https://doi.org/10.1177/014860710703100169
  73. Frequin S.T., Wevers R.A., Braam M., Barkhof F., Hommes O.R. Decreased vitamin B12 and folate levels in cerebrospinal fluid and serum of multiple sclerosis patients after high-dose intravenous methylprednisolone // J. Neurol. 1993. V. 240. № 5. P. 305. https://doi.org/10.1007/BF00838168
  74. Frye K.A., Piamthai V., Hsiao A., Degnan P.H. Mobilization of vitamin B12 transporters alters competitive dynamics in a human gut microbe // Cell Rep. 2021. V. 37. № 13. P. 110164. https://doi.org/10.1016/j.celrep.2021.110164
  75. Gasperi V., Sibilano M., Savini I., Catani M.V. Niacin in the central nervous system: an update of biological aspects and clinical applications // Int. J. Mol. Sci. 2019. V. 20. № 4. P. 974. https://doi.org/10.3390/ijms20040974
  76. Gazzaniga F., Stebbins R., Chang S.Z., McPeek M.A., Brenner C. Microbial NAD metabolism: lessons from comparative genomics // Microbiol. Mol. Biol. Rev. 2009. V. 73. P. 529. https://doi.org/10.1128/MMBR.00042-08
  77. Ghadirian P., Jain M., Ducic S., Shatenstein B., Morisset R. Nutritional factors in the aetiology of multiple sclerosis: a case-control study in Montreal, Canada // Int. J. Epidemiol. 1998. V. 27. № 5. P. 845.https://doi.org/10.1093/ije/27.5.845
  78. Ghasemi N., Razavi S., Nikzad E. Multiple sclerosis: Pathogenesis, symptoms, diagnoses and cell-based therapy // Cell J. 2017. V. 19. № 1. P. 1. https://doi.org/10.22074/cellj.2016.4867
  79. Ghosal A., Lambrecht N., Subramanya S.B., Kapadia R., Said H.M. Conditional knockout of the Slc5a6 gene in mouse intestine impairs biotin absorption // Am. J. Physiol. Gastrointest. Liver Physiol. 2013. V. 304. № 1. P. 64. https://doi.org/10.1152/ajpgi.00379.2012
  80. Gibiino G., Lopetuso L.R., Scaldaferri F. et al. Exploring Bacteroidetes: Metabolic key points and immunological tricks of our gut commensals // Dig. Liver Dis. 2018. V. 50. 7. P. 635. https://doi.org/10.1016/j.dld.2018.03.016
  81. Goodman A.L., McNulty N.P., Zhao Y. et al. Identifying genetic determinants needed to establish a human gut symbiont in its habitat // Cell Host Microbe. 2009. V. 6. № 3. P. 279. https://doi.org/10.1016/j.chom.2009.08.003
  82. Gordon H.A., Pesti L. The gnotobiotic animal as a tool in the study of host microbial relationship // Bacteriological. Rev. 1971. V. 35. № 4. P. 390. https://doi.org/10.1128/br.35.4.390-429.1971
  83. Green R., Allen L.H., Bjørke-Monsen A.L. et al. Vitamin B12 deficiency // Nat. Rev. Dis. Primers. 2017. V. 3. P. 17040. https://doi.org/10.1038/nrdp.2017.40
  84. Gröber U., Kisters K., Schmidt J. Neuroenhancement with vitamin B12-underestimated neurological significance // Nutrients. 2013. V. 5. № 12. P. 5031. https://doi.org/10.3390/nu5125031
  85. Gu Q., Li P. Biosynthesis of Vitamins by Probiotic Bacteria // Probiotics and Prebiotics in Human Nutrition and Health. 2016. Ch 6. P. 135. https://doi.org/10.5772/63117
  86. Guillevin C., Agius P., Naudin M. et al. 1H-31P magnetic resonance spectroscopy: effect of biotin in multiple sclerosis // Ann. Clin. Transl. Neurol. 2019. V. 6. № 7. P. 1332. https://doi.org/10.1002/acn3.50825
  87. Guimarães D.H., Weber A., Klaiber I., Vogler B., Renz P. Guanylcobamide and hypoxanthylcobamide-Corrinoids formed by Desulfovibrio vulgaris // Arch. Microbiol. 1994. V. 162. P. 272. https://doi.org/10.1007/BF00301850
  88. Haan M.N., Miller J.W., Aiello A.E. et al. Homocysteine, B vitamins, and the incidence of dementia and cognitive impairment: results from the Sacramento area Latino study on aging // Am. J. Clin. Nutr. 2007. V. 85. № 2. P. 511. https://doi.org/10.1093/ajcn/85.2.511
  89. Hadadi N., Berweiler V., Wang H., Trajkovski M. Intestinal microbiota as a route for micronutrient bioavailability // Curr. Opin. Endocr. Metab. Res. 2021. V. 20. P. 100 285. https://doi.org/10.1016/j.coemr.2021.100285
  90. Hakim M., Kurniani N., Pinzon R.T. et al. Management of peripheral neuropathy symptoms with a fixed dose combination of high-dose vitamin B1, B6 and B12: a 12-week prospective non-interventional study in Indonesia // Asian J. Med. Sci. 2018. V. 9. № 1. P. 32. https://doi.org/10.3126/ajms.v9i1.18510
  91. Hankes L.V., Coenen H.H., Rota E. et al. Effect of Huntington’s and Alzheimer’s diseases on the transport of nicotinic acid or nicotinamide across the human blood brain barrier // Adv. Exp. Med. Biol. 1991. V. 294. P. 675. https://doi.org/10.1007/978-1-4684-5952-4_91
  92. Hansen N.W., Sams A. The Microbiotic Highway to Health–New Perspective on Food Structure, Gut Microbiota, and Host Inflammation // Nutrients. 2018. V. 10. № 11. P. 1590. https://doi.org/10.3390/nu10111590
  93. Harbige L.S. Nutrition and immunity with emphasis on infection and autoimmune disease // Nutr. Health. 1996. V. 10. № 4. P. 285. https://doi.org/10.1177/026010609601000401
  94. Hashimoto T., Perlot T., Rehman A. et al. ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation // Nature. 2012. V. 487. P. 477. https://doi.org/10.1038/nature11228
  95. Hayashi A., Mikami Y., Miyamoto K. et al. Intestinal Dysbiosis and Biotin Deprivation Induce Alopecia through Overgrowth of Lactobacillus murinus in Mice // Cell Rep. 2017. V. 20. № 7. P. 1513. https://doi.org/10.1016/j.celrep.2017.07.057
  96. Hazell A.S., Butterworth R.F. Update of cell damage mechanisms in thiamine deficiency: focus on oxidative stress, excitotoxicity and inflammation // Alcohol Alcohol. 2009. V. 44. № 2. P. 141. https://doi.org/10.1093/alcalc/agn120
  97. Hedström A.K., Alfredsson L., Olsson T. Environmental factors and their interactions with risk genotypes in MS susceptibility // Curr. Opin. Neurol. 2016. V. 29. № 3. P. 293. https://doi.org/10.1097/WCO.0000000000000329
  98. Hegyi J., Schwartz R.A., Hegyi V. Pellagra: dermatitis, dementia, and diarrhea // Int. J. Dermatol. 2004. V. 43. № 1. P. 1. https://doi.org/10.1111/j.1365-4632.2004.01959.x
  99. Heinken A., Khan M.T., Paglia G. et al. Functional metabolic map of Faecalibacterium prausnitzii, a beneficial human gut microbe // J. Bacteriol. 2014. V. 196. № 18. P. 3289. https://doi.org/10.1128/JB.01780-14
  100. Hoban A.E., Stilling R.M., Ryan F.J. et al. Regulation of prefrontal cortex myelination by the microbiota // Transl. Psychiatry. 2016. V. 6. № 4. e774. https://doi.org/10.1038/tp.2016.42
  101. Huang S.-C., Wei J.C.-C., Wu D.J., Huang Y.-C. Vitamin B(6) supplementation improves pro-inflammatory responses in patients with rheumatoid arthritis // Eur. J. Clin. Nutr. 2010. V. 64. № 9. P. 1007. https://doi.org/10.1038 / ejcn.2010.107
  102. Huang S., Ma J., Zhu M., Ran Z.V. Status of serum vitamin B12 and folate in patients with inflammatory bowel disease in China // Intest. Res. 2017. V. 15. № 1. P. 103. https://doi.org/10.5217/ir.2017.15.1.103
  103. Huskisson E., Maggini S., Ruf M. The role of vitamins and minerals in energy metabolism and well-being // J. Int. Med. Res. 2007. V. 35. № 35. P. 277. https://doi.org/10.1177/147323000703500301
  104. Hwang C., Ross V., Mahadevan U. Micronutrient deficiencies in inflammatory bowel disease: from a to zinc // Inflamm. Bowel Dis. 2012. V. 18. № 10. P. 1961. https://doi.org/10.1002/ibd.22906
  105. International Multiple Sclerosis Genetics Consortium; Wellcome Trust Case Control Consortium 2; Sawcer S., Hellenthal G., Pirinen M. et al. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis // Nature. 2011. V. 476. № 7359. P. 214. https://doi.org/10.1038/nature10251
  106. Isager H. Serum folate in patients with multiple sclerosis // Acta Neurol. Scand. 1970. V. 46. № 2. P. 238. https://doi.org/10.1111/j.1600-0404.1970.tb05619.x
  107. Jankowska–Kulawy A., Bielarczyk H., Pawełczyk T., Wróblewska M., Szutowicz A. Acetyl-CoA deficit in brain mitochondria in experimental thiamine deficiency encephalopathy // Neurochem. Int. 2010. V. 57. № 7. P. 851. https://doi.org/10.1016/j.neuint.2010.09.003
  108. Ji Z., Fan Z., Zhang Y. et al. Thiamine deficiency promotes T cell infiltration in experimental autoimmune encephalomyelitis: the involvement of CCL2 // J. Immunol. 2014. V. 193. № 5. P. 2157. https://doi.org/10.4049/jimmunol.1302702
  109. Johnson E.L., Heaver S.L., Walters W.A. Ley R.E. Microbiome and metabolic disease: revisiting the bacterial phylum Bacteroidetes // J. Mol. Med. (Berl). 2017. V. 95. № 1. P. 1. https://doi.org/10.1007/s00109-016-1492-2
  110. Johnson S. The possible role of gradual accumulation of copper, cadmium, lead and iron and gradual depletion of zinc, magnesium, selenium, vitamins B2, B6, D, and E and essential fatty acids in multiple sclerosis // Med. Hypotheses. 2000. V. 55. № 3. P. 239. https://doi.org/10.1054/mehy.2000.1051
  111. Johnson W.D., Storts R.W. Peripheral neuropathy associated with dietary riboflavin deficiency in the chicken, I: light microscopic study // Vet. Pathol. 1988. V. 25. № 1. P. 9. https://doi.org/10.1177/030098588802500102
  112. Kalekar L.A., Schmiel S.E., Nandiwada S.L. et al. CD4+ T cell anergy prevents autoimmunity and generates regulatory T cell precursors // Nat. Immunol. 2016. V. 17. № 3. P. 304. https://doi.org/10.1038 / ni.3331
  113. Kamanna V.S., Kashyap M.L. Mechanism of action of niacin // Am. J. Cardiol. 2008. V. 101. P. 20B. https://doi.org/10.1016/j.amjcard.2008.02.029
  114. Kanehisa M., Goto S. // KEGG: kyoto encyclopedia of genes and genomes // Nucleic. Acids. Res. 2000. V. 28. № 1. P. 27. https://doi.org https://doi.org/10.1093/nar/28.1.27
  115. Kaneko S., Wang J., Kaneko M. et al. Protecting axonal degeneration by increasing nicotinamide adenine dinucleotide levels in experimental autoimmune encephalomyelitis models // J. Neurosci. 2006. V. 26. № 38. P. 9794. https://doi.org/10.1523/JNEUROSCI.2116-06.2006
  116. Kanevskaia S.A., Kravets A.S., Slesarenko E.V., Shevchenko V.I., Tkachenko N.V. Folic acid in the combined treatment of patients with disseminated sclerosis and chronic gastritis // Vrach. Delo. 1990. V. 4. P. 96. (In Russ).
  117. Karpe F., Frayn K.N. The nicotinic acid receptor–a new mechanism for an old drug // Lancet. 2004. V. 363. P. 1892. https://doi.org/10.1016/S0140-6736(04)16359-9
  118. Kennedy D.O. B Vitamins and the Brain: Mechanisms, Dose and Efficacy–A Review // Nutrients. 2016. V. 8. № 2. P. 68. https://doi.org/10.3390/nu8020068
  119. Khan M.T., Duncan S.H., Stams A.J.M. et al. The gut anaerobe Faecalibacterium prausnitzii uses an extracellular electron shuttle to grow at oxic-anoxic interphases // ISME J. 2012. V. 6. № 8. P. 1578. https://doi.org/10.1038/ismej.2012.5
  120. Kimura S., Ohtuki N., Nezu A., Tanaka M., Takeshita S. Clinical and radiologic improvements in mitochondrial encephalomyelopathy following sodium dichloroacetate therapy // Brain Dev. 1997. V. 19. № 8. P. 535. https://doi.org/10.1016/s0387-7604(97)00074-0
  121. Kira J., Tobimatsu S., Goto I. Vitamin B12 metabolism and massive-dose methyl vitamin B12 therapy in Japanese patients with multiple sclerosis // Intern. Med. 1994. V. 33. № 2. P. 82. https://doi.org/10.2169/internalmedicine.33.82
  122. Kjer-Nielsen L., Patel O., Corbett A.J. et al. MR1 presents microbial vitamin B metabolites to MAIT cells // Nature. 2012. V. 491. № 7426. P. 717. https://doi.org/10.1038/nature11605
  123. Klenner F.B. Response of Peripheral and Central Nerve Pathology to Mega-Doses of the Vitamin B-Complex and Other Metabolites // J. Appl. Nutr. 1973. https://www.tldp.com/issue/11_00/klenner.htm
  124. Kocer B., Engur S., Ak F., Yılmaz M. Serum vitamin B12, folate, and homocysteine levels and their association with clinical and electrophysiological parameters in multiple sclerosis // J. Clin. Neurosci. 2009. V. 16. № 3. P. 399. https://doi.org/10.1016/j.jocn.2008.05.015
  125. Koike H., Watanabe H., Inukai A. et al. Myopathy in thiamine deficiency: Analysis of a case // J. Neurol. Sci. 2006. V. 249. № 2. P. 175. https://doi.org/10.1016/j.jns.2006.06.016
  126. Kok D.E., Steegenga W.T., McKay J.A. Folate and epigenetics: why we should not forget bacterial biosynthesis // Epigenomics. 2018. V. 10. № 9. P. 1147. https://doi.org/10.2217/epi-2018-0117
  127. Komatsu F., Kagawa Y., Kawabata T. et al. Influence of essential trace minerals and micronutrient insufficiencies on harmful metal overload in a Mongolian patient with multiple sclerosis // Curr. Aging Sci. 2012. V. 5. № 2. P. 112. https://doi.org/10.2174/1874609811205020112
  128. Kräutler B., Fieber W., Ostermann S. et al. The cofactor of tetrachloroethene reductive dehalogenase of Dehalospirillum multivorans is norpseudo-B12, a new type of a natural corrinoid // Helv. Chim. Acta. 2003. V. 86. № 11. P. 3698. https://doi.org/10.1002/hlca.200390313
  129. Kruman I.I., Culmsee C., Chan S.L. et al. Homocysteine elicits a DNA damage response in neurons that promotes apoptosis and hypersensitivity to excitotoxicity // J. Neurosci. 2000. V. 20. № 18. P. 6920. https://doi.org/10.1523/JNEUROSCI.20-18-06920.2000
  130. Kumar J.S., Subramanian V.S., Kapadia R., Kashyap M.L., Said H.M. Mammalian colonocytes possess a carrier-mediated mechanism for uptake of vitamin B3 (niacin): studies utilizing human and mouse colonic preparations // Am. J. Physiol. Gastrointest. Liver Physiol. 2013. V. 305. № 3. P G207. https://doi.org/10.1152/ajpgi.00148.2013
  131. Kurnasov O., Goral V., Colabroy K. et al. NAD biosynthesis: identification of the tryptophan to quinolinate pathway in bacteria // Chem. Biol. 2003. V. 10. № 12. P. 1195. https://doi.org/10.1016/j.chembiol.2003.11.011
  132. Lakhan R., Said H.M. Lipopolysaccharide inhibits colonic biotin uptake via interference with membrane expression of its transporter: a role for a casein kinase 2-mediated pathway // Am. J. Physiol. Cell Physiol. 2017. V. 312. № 4. P. C376. https://doi.org/10.1152/ajpcell.00300.2016
  133. Lakoff A., Fazili Z., Aufreiter S. et al. Folate is absorbed across the human colon: evidence by using enteric-coated caplets containing 13C-labeled [6S]-5-formyltetrahydrofolate // Am. J. Clin. Nutr. 2014. V. 100. № 5. P. 1278. https://doi.org/10.3945/ajcn.114.091785
  134. Lassmann H., Brück W., Lucchinetti C. The immunopathology of multiple sclerosis: an overview // Brain Pathol. 2007. V. 17. № 2. P. 210. https://doi.org/10.1111/j.1750-3639.2007.00064.x
  135. Lassmann H. Multiple sclerosis: Lessons from molecular neuropathology // Exp. Neurol. 2014. V. 262. P. 2. https://doi.org/10.1016/j.expneurol.2013.12.003
  136. LeBlanc J.G., Milani C., de Giori G.S. et al. Bacteria as vitamin suppliers to their host: a gut microbiota perspective // Curr. Opin. Biotechnol. 2013. V. 24. № 2. P.160. https://doi.org/10.1016/j.copbio.2012.08.005
  137. Ley R.E., Peterson D.A., Gordon J.I. Ecological and evolutionary forces shaping microbial diversity in the human intestine // Cell. 2006. V. 124. № 4. P. 837. https://doi.org/10.1016/j.cell.2006.02.017
  138. Likosky W.H., Fireman B., Elmore R. et al. Intense immunosuppression in chronic progressive multiple sclerosis: the Kaiser study // J. Neurol. Neurosurg. Psychiatry. 1991. V. 54. № 12. P. 1055. https://doi.org/10.1136/jnnp.54.12.1055
  139. Luo A., Leach S.T., Barres R. et al. The microbiota and epigenetic regulation of T Helper 17/regulatory T cells: in search of a balanced immune system // Front. Immunol. 2017. V. 8. P. 417. https://doi.org/10.3389/fimmu.2017.00417
  140. Magnúsdóttir S., Ravcheev D., de Crécy-Lagard V., Thiele I. Systematic genome assessment of B-vitamin biosynthesis suggests co-operation among gut microbes // Front. Genet. 2015. V. 6. P. 148. https://doi.org/10.3389/fgene.2015.00148
  141. Maillart E., Mochel F., Acquaviva C., Maisonobe T., Stankoff B. Severe transient myopathy in a progressive multiple sclerosis patient with high-dose biotin // Neurol. 2019. V. 92. № 22. P. 1060. https://doi.org/10.1212/WNL.0000000000007576
  142. Mallone F., Lucchino L., Franzone F. et al. High-dose vitamin B supplementation for persistent visual deficit in multiple sclerosis: a pilot study // Drug Discov. Ther. 2020. V. 14. № 3. P. 122. https://doi.org/10.5582/ddt.2020.03031
  143. Mandić M., Mitić K., Nedeljković P. et al. Vitamin B Complex and Experimental Autoimmune Encephalomyelitis-Attenuation of the Clinical Signs and Gut Microbiota Dysbiosis // Nutrients. 2022. V. 14. № 6. P. 1273. https://doi.org/10.3390/nu14061273
  144. Mastronardi F.G., Min W., Wang H. et al. Attenuation of experimental autoimmune encephalomyelitis and nonimmune demyelination by IFN-beta plus vitamin B12: treatment to modify notch-1/sonic hedgehog balance // J. Immunol. 2004. V. 172. № 10. P. 6418. https://doi.org/10.4049/jimmunol.172.10.6418
  145. Mastronardi F.G., Tsui H., Winer S. et al. Synergy between paclitaxel plus an exogenous methyl donor in the suppression of murine demyelinating diseases // Mult. Scler. 2007. V. 13. № 5. P. 596. https://doi.org/10.1177/1352458506072167
  146. Mathais S., Moisset X., Pereira B. et al. Relapses in Patients Treated with High-Dose Biotin for Progressive Multiple Sclerosis // Neurotherapeutics. 2021. V. 18. № 1. P. 378. https://doi.org/10.1007/s13311-020-00926-2
  147. Mazmanian S.K., Liu C.H., Tzianabos A.O., Kasper D.L. An immunoregulatory molecule of symbiotic bacteria directs maturation of the host immune system // Cell. 2005. V. 122. № 1. P. 107. https://doi.org/10.1016/j.cell.2005.05.007
  148. McKay K.A., Jahanfar S., Duggan T., Tkachuk S., Tremlett H. Factors associated with onset, relapses or progression in multiple sclerosis: a systematic review // Neurotoxicology. 2017. V. 61. P. 189. https://doi.org/10.1016/j.neuro.2016.03.020
  149. Meikle A.W., Wittek P.J., Klain G.J. An aberration of glucose metabolism and steroidogenesis in adrenals of thiamin-deficient rats // Endocrinology. 1972. V. 91. № 5. P. 1206. https://doi.org/10.1210/endo-91-5-1206
  150. Men Y., Seth E.C., Yi S. et al. Identification of specific corrinoids reveals corrinoid modification in dechlorinating microbial communities // Environ. Microbiol. 2015. V. 17. № 12. P. 4873. https://doi.org/10.1111/1462-2920.12500
  151. Merra G., Noce A., Marrone G. et al. Influence of Mediterranean Diet on Human Gut Microbiota // Nutrients. 2021. V. 13. № 1. P. 7. https://doi.org/10.3390/nu13010007
  152. Meydani S.N., Ribaya-Mercado J.D., Russell R.M. et al. Vitamin B-6 deficiency impairs interleukin 2 production and lymphocyte proliferation in elderly adults // Am. J. Clin. Nutr. 1991. V. 53. № 5. P. 1275. https://doi.org/10.1093/ajcn/53.5.1275
  153. Mielcarz D.W., Kasper L.H. The Gut Microbiome in Multiple Sclerosis // Curr. Treat. Options Neurol. 2015. V. 17. № 4. P. 344. https://doi.org/10.1007/s11940-015-0344-7
  154. Miki T., Goto R., Fujimoto M. et al. The Bactericidal Lectin RegIIIβ Prolongs Gut Colonization and Enteropathy in the Streptomycin Mouse Model for Salmonella Diarrhea // Cell Host Microbe. 2017. V. 21. P. 195. https://doi.org/10.1016/j.chom.2016.12.008
  155. Mikkelsen K., Stojanovska L., Tangalakis K., Bosevski M., Apostolopoulos V. Cognitive decline: a vitamin B perspective // Maturitas. 2016. V. 93. P. 108. https://doi.org/10.1016/j.maturitas.2016.08.001
  156. Mikkelsen K., Stojanovska L., Prakash M., Apostolopoulos V. The effects of vitamin B on the immune/cytokine network and their involvement in depression // Maturitas. 2017. V. 96. P. 58. https://doi.org/10.1016/j.maturitas.2016.11.012
  157. Miller A., Korem M., Almog R., Galboiz Y. Vitamin B12, demyelination, remyelination and repair in multiple sclerosis // J. Neurol. Sci. 2005. V. 233. № 1–2. P. 93. https://doi.org/10.1016/j.jns.2005.03.009
  158. Miller K.L., Trifan G., Testai F.D. Neurology of Nutritional Deficiencies // Curr. Neurol. Neurosci. Rep. 2019. V. 19. № 12. P. 101. https://doi.org/10.1007/s11910-019-1011-2
  159. Miller J.W., Ribaya-Mercado J.D., Russell R.M. et al. Effect of vitamin B-6 deficiency on fasting plasma homocysteine concentrations // Am. J. Clin. Nutr. 1992. V. 55. № 6. P. 1154. https://doi.org/10.1093/ajcn/55.6.1154
  160. Miyake S., Kim S., Suda W. et al. Dysbiosis in the gut microbiota of patients with multiple sclerosis, with a striking depletion of species belonging to Clostridia XIVa and IV clusters // PLoS One. 2015. V. 10. № 9. e0137429. https://doi.org/10.1371/journal.pone.0137429
  161. Moghaddasi M., Mamarabadi M., Mohebi N., Razjouyan H., Aghaei M. Homocysteine, vitamin B12 and folate levels in Iranian patients with Multiple Sclerosis: a case control study // Clin. Neurol. Neurosurg. 2013. V. 115. № 9. P. 1802. https://doi.org/10.1016/j.clineuro.2013.05.007
  162. Moore M.T. Treatment of multiple sclerosis with nicotinic acid and vitamin B1 // Arch. Intern. Med. (Chic). 1940. V. 65. № 1. P. 1. https://doi.org/10.1001/archinte.1940.00190070011001
  163. Morales M.S., Mueller D. Anergy into T regulatory cells: an integration of metabolic cues and epigenetic changes at the Foxp3 conserved non-coding sequence 2 // F1000Res. 2018. V. 7. P. 1938. https://doi.org/10.12688/f1000research.16551.1
  164. Morra M., Philipszoon H.D., D’Andrea G. et al. Sensory and motor neuropathy caused by excessive ingestion of vitamin B6: a case report // Funct. Neurol. 1993. V. 8. № 6. P. 429.
  165. Naghashpour M., Amani R., Sarkaki A. et al. Brain-derived neurotrophic and immunologic factors: beneficial effects of riboflavin on motor disability in murine model of multiple sclerosis // Iran J. Basic Med. Sci. 2016. V. 19. № 4. P. 439.
  166. Naghashpour M., Majdinasab N., Shakerinejad G. et al. Riboflavin supplementation to patients with multiple sclerosis does not improve disability status nor is riboflavin supplementation correlated to homocysteine // Int. J. Vitam. Nutr. Res. 2013. V. 83. № 5. P. 281. https://doi.org/10.1024/0300-9831/a000170
  167. Najafi M.R., Shaygannajad V., Mirpourian M., Gholamrezaei A. Vitamin B(12) Deficiency and Multiple Sclerosis; Is there Any Association? // Int. J. Prev. Med. 2012. V. 3. № 4. P. 286.
  168. Nardone R., Höller Y., Storti M. et al. Thiamine deficiency induced neurochemical, neuroanatomical, and neuropsychological alterations: A reappraisal // Sci. World J. 2013. V. 2013. P. 309143. https://doi.org/10.1155/2013/309143
  169. Nemazannikova N., Mikkleson K., Stojanovska L., Blatch G.L, Apostolopoulos V. Is there a link between vitamin B and multiple sclerosis? // Med. Chem. 2018. V. 14. № 2. P. 170. https://doi.org/10.2174/1573406413666170906123857
  170. Nijst T.Q., Wevers R.A., Schoonderwaldt H.C., Hommes O.R., de Haan A.F. Vitamin B12 and folate concentrations in serum and cerebrospinal fluid of neurological patients with special reference to multiple sclerosis and dementia // J. Neurol. Neurosurg. Psychiatry. 1990. V. 53. № 11. P. 951. https://doi.org/10.1136/jnnp.53.11.951
  171. Nilsson K., Gustafson L., Hultberg B. Elevated plasma homocysteine level in vascular dementia reflects the vascular disease process // Dement. Geriatr. Cogn. Dis. Extra. 2013. V. 3. № 1. P. 16. https://doi.org/10.1159/000345981
  172. Obeid R., McCaddon A., Herrmann W. The role of hyperhomocysteinemia and B-vitamin deficiency in neurological and psychiatric diseases // Clin. Chem. Lab. Med. 2007. V. 45. № 12. P. 1590. https://doi.org/10.1515/CCLM.2007.356
  173. Offermanns S., Schwaninger M. Nutritional or pharmacological activation of HCA(2) ameliorates neuroinflammation // Trends Mol. Med. 2015. V. 21. № 4. P. 245. https://doi.org/10.1016/j.molmed.2015.02.002
  174. Offermanns S. Hydroxy-Carboxylic Acid Receptor Actions in Metabolism // Trends Endocrinol. Metab. 2017. V. 28. № 3. P. 227. https://doi.org/10.1016/j.tem.2016.11.007
  175. Okada K., Tanaka H., Temporin K. et al. Methylcobalamin increases Erk1/2 and Akt activities through the methylation cycle and promotes nerve regeneration in a rat sciatic nerve injury model // Exp. Neurol. 2010. V. 222. № 2. P. 191. https://doi.org/10.1016/j.expneurol.2009.12.017
  176. Parra M., Stahl S., Hellmann H. Vitamin B6 and Its Role in Cell Metabolism // Cells. 2018. V. 7. № 7. P. 84. https://doi.org/10.3390/cells7070084
  177. Penberthy W.T., Tsunoda I. The Importance of NAD in Multiple Sclerosis // Curr. Pharm. Des. 2009. V. 15. № 1. P. 64. https://doi.org/10.2174/138161209787185751
  178. Pratt J.M., Thorp R.G. The Chemistry of Vitamin B12. Part. V. The Class (b) Character of the Cobaltic Ion Inorganic Chemistry of Vitamin B12 // J. Chem. Soc. A. 1966. P. 187. https://doi.org/10.1039/J19660000187
  179. Putnam E.E., Goodman A.L. B vitamin acquisition by gut commensal bacteria // PLoS Pathog. 2020. V. 16. № 1. P. e1008208. https://doi.org/10.1371/ journal.ppat.1008208
  180. Qi B., Kniazeva M., Han M. A vitamin-B2-sensing mechanism that regulates gut protease activity to impact animal’s food behavior and growth // Elife. 2017. V. 6. e26243. https://doi.org/10.7554/eLife.26243
  181. Qin J., Li R., Raes J. et al. A human gut microbial gene catalogue established by metagenomic sequencing // Nature. 2010. V. 464. № 7285. P. 59. https://doi.org/10.1038/nature08821
  182. Raichle M.E. Two views of brain function // Trends Cogn. Sci. 2010. V. 14. № 4. P. 180. https://doi.org/10.1016/j.tics.2010.01.008
  183. Rall L.C., Meydani S.N. Vitamin B6 and immune competence // Nutr. Rev. 1993. V. 51. № 8. P. 217. https://doi.org/10.1111/j.1753-4887.1993.tb03109.x
  184. Rawji K.S., Young A.M.H., Ghosh T. et al. Niacin-mediated rejuvenation of macrophage/microglia enhances remyelination of the aging central nervous system // Acta Neuropathol. 2020. V. 139. № 5. P. 893. https://doi.org/10.1007/s00401-020-02129-7
  185. Reynolds E.H., Linnell J.C., Faludy J.E. Multiple sclerosis associated with vitamin B12 deficiency // Arch. Neurol. 1991. V. 48. № 8. P. 808. https://doi.org/10.1001/archneur.1991.00530200044017
  186. Reynolds E. Vitamin B12, folic acid, and the nervous system // Lancet Neurol. 2006. V. 5. № 11. P. 949. https://doi.org/10.1016/S1474-4422(06)70598-1
  187. Riccio P. The molecular basis of nutritional intervention in multiple sclerosis: a narrative review // Complement Ther. Med. 2011. V. 19. № 4. P. 228. https://doi.org/10.1016/j.ctim.2011.06.006
  188. Rojo D., Méndez-García C., Raczkowska B.A. et al. Exploring the human microbiome from multiple perspectives: factors altering its composition and function // FEMS Microbiol. Rev. 2017. V. 41. № 4. P. 453–478. https://doi.org/10.1093/femsre/fuw046
  189. Rong N., Selhub J., Goldin B.R., Rosenberg I.H. Bacterially synthesized folate in rat large intestine is incorporated into host tissue folyl polyglutamates // J. Nutr. 1991. V. 121. № 12. P. 1955. https://doi.org/10.1093/jn/121.12
  190. Rossi M., Amaretti A., Raimondi S. Folate production by probiotic bacteria // Nutrients. 2011. V. 3. № 1. P. 118. https://doi.org/10.3390/nu3010118
  191. Russo C., Morabito F., Luise F. et al. Hyperhomocysteinemia is associated with cognitive impairment in multiple sclerosis // J. Neurol. 2008. V. 255. № 1. P. 64. https://doi.org/10.1007/s00415-007-0668-7
  192. Said H.M., Kumar C. Intestinal absorption of vitamins // Curr. Opin. Gastroenterol. 1999. V. 15. № 2. P. 172. https://doi.org/10.1097/00001574-199903000-00015
  193. Said H.M., Mohammed Z.M. Intestinal absorption of water-soluble vitamins: an update // Curr. Opin. Gastroenterol. 2006. V. 22. № 2. P. 140. https://doi.org/10.1097/01.mog.0000203870.22706.52
  194. Said H.M., Nexo E. Gastrointestinal Handling of Water-Soluble Vitamins // Compr. Physiol. 2018. V. 8. № 4. P. 1291. https://doi.org/10.1002/cphy.c170054
  195. Salemi G., Gueli M.C., Vitale F. et al. Blood lipids, homocysteine, stress factors, and vitamins in clinically stable multiple sclerosis patients // Lipids Health Dis. 2010. V. 9. № 19. P. 19. https://doi.org/10.1186/1476-511X-9-19
  196. Sampson T.R., Mazmanian S.K. Control of Brain Development, Function, and Behavior by the Microbiome // Cell Host Microbe. 2015. V. 17. № 5. P. 565. https://doi.org/10.1016/j.chom.2015.04.011
  197. Sanada Y., Kumoto T., Suehiro H. et al. RASSF6 expression in adipocytes is down-regulated by interaction with macrophages // PLoS One. 2013. V. 8. № 4. e61931. https://doi.org/10.1371/journal.pone.0061931
  198. Sandyk R., Awerbuch G.I. Vitamin B12 and its relationship to age of onset of multiple sclerosis // Int. J. Neurosci. 1993. V. 71. № 1–4. P. 93. https://doi.org/10.3109/00207459309000596
  199. Scalabrino G., Buccellato F.R., Veber D., Mutti E. New basis of the neurotrophic action of vitamin B12 // Clin. Chem. Lab. Med. 2003. V. 41. № 11. P. 1435. https://doi.org/10.1515/CCLM.2003.220
  200. Scalabrino G., Veber D., De Giuseppe R., Roncaroli F. Low levels of cobalamin, epidermal growth factor, and normal prions in multiple sclerosis spinal cord // Neuroscience. 2015. V. 298. P. 293. https://doi.org/10.1016/j.neuroscience.2015.04.020
  201. Schlenz M.A., Schlenz M.B., Wöstmann B. et al. Riboflavin Is an Important Determinant of Vitamin B-6 Status in Healthy Adults // J. Nutr. 2020. V. 150. № 10. P. 2699. https://doi.org/10.1093/jn/nxaa225
  202. Schroecksnadel K., Frick B., Wirleitner B. et al. Moderate hyperhomocysteinemia and immune activation // Curr. Pharm. Biotechnol. 2004. V. 5. № 1. P. 107. https://doi.org/10.2174/1389201043489657
  203. Schwarz M.J., Guillemin G.J., Teipel S.J., Buerger K., Hampel H. Increased 3-hydroxykynurenine serum concentrations differentiate Alzheimer’s disease patients from controls // Eur. Arch. Psychiatry Clin. Neurosci. 2013. V. 263. № 4. P. 345. https://doi.org/10.1007/s00406-012-0384-x
  204. Sedaghat F., Jessri M., Behrooz M., Mirghotbi M., Rashidkhani B. Mediterranean diet adherence and risk of multiple sclerosis: a case-control study // Asia Pac. J. Clin. Nutr. 2016. V. 25. № 2. P. 377. https://doi.org/10.6133/apjcn.2016.25.2.12
  205. Sedel F., Papeix C., Bellanger A. et al. High doses of biotin in chronic progressive multiple sclerosis: a pilot study // Mult. Scler. Relat. Disord. 2015. V. 4. № 2. P. 159. https://doi.org/10.1016/j.msard.2015.01.005
  206. Segal I., Tim L.O., Demetriou A. et al. Rectal manifestations of pellagra // Int. J. Colorectal Dis. 1986. V. 1. № 4. P. 238. https://doi.org/10.1007/BF01648345
  207. Selhub J., Byun A., Liu Z. et al. Dietary vitamin B6 intake modulates colonic inflammation in the IL10–/– model of inflammatory bowel disease // J. Nutr. Biochem. 2013. V. 24. №12. P. 2138. https://doi.org/10.1016/j.jnutbio.2013.08.005
  208. Serbus L.R., Rodriguez B.G., Sharmin Z., Momtaz A.J.M.Z., Christensen S. Predictive Genomic Analyses Inform the Basis for Vitamin Metabolism and Provisioning in Bacteria-Arthropod Endosymbioses // G3 (Bethesda). 2017. V. 7. № 6. P.1887. https://doi.org/10.1534/g3.117.042184
  209. Serra-Majem L., Bes-Rastrollo M., Román-Viñas B. et al. Dietary patterns and nutritional adequacy in a mediterranean country // Br. J. Nutr. 2009. V. 101 (Suppl. 2). P. S21. https://doi.org/10.1017/S0007114509990559
  210. Shen Y., Xu J., Li Z. et al. Analysis of gut microbiota diversity and auxiliary diagnosis as a biomarker in patients with schizophrenia: A cross-sectional study // Schizophr. Res. 2018. V. 197. P. 470. https://doi.org/10.1016/j.schres.2018.01.002
  211. Shibata K., Onodera M. Comparison of Tryptophan-Niacin Conversion in Rats Fed with a Nicotinic Acid-Free Diet Containing Egg White, Egg White Proteolysate, or Mixtures of Amino Acid // Agric. Biol. Chem. 1991. V. 55. № 5. P. 1291. https://doi.org/10.1080/00021369.1991.10870775
  212. Shibata K., Nakata C., Fukuwatari T. Moderate Food Restriction Suppresses the Conversion of L-tryptophan to Nicotinamide in Weaning Rats // Biosci. Biotechnol. Biochem. 2014. V. 78. P. 478. https://doi.org/10.1080/09168451.2014.890025
  213. Shibata K., Kobayashi R., Fukuwatari T. Vitamin B1 Deficiency Inhibits the Increased Conversion of Tryptophan to Nicotinamide in Severe Food-Restricted Rats // Biosci. Biotechnol. Biochem. 2015. V. 79. № 1. P. 103. https://doi.org/10.1080/09168451.2014.962473
  214. Shibata K. Organ Co-Relationship in Tryptophan Metabolism and Factors That Govern the Biosynthesis of Nicotinamide from Tryptophan // J. Nutr. Sci. Vitaminol. 2018. V. 64. № 2. P. 90. https://doi.org/10.3177/jnsv.64.90
  215. Siddiqui U., Egnor E., Sloane J.A. Biotin supplementation in MS clinically valuable but can alter multiple blood test results // Mult. Scler. 2017. V. 23. № 4. P. 619. https://doi.org/10.1177/1352458516680751
  216. Singh N., Gurav A., Sivaprakasam S. et al. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis // Immunity. 2014. V. 40. № 1. P. 128. https://doi.org/10.1016/j.immuni.2013.12.007
  217. Sly L.M., Lopez M., Nauseef W.M., Reiner N.E. 1alpha,25-Dihydroxyvitamin D3-induced monocyte antimycobacterial activity is regulated by phosphatidylinositol 3-kinase and mediated by the NADPH-dependent phagocyte oxidase // J. Biol. Chem. 2001. V. 276. № 38. P. 35482. https://doi.org/10.1074/jbc.M102876200
  218. Solomon L.R. Cobalamin-responsive disorders in the ambulatory care setting: unreliability of cobalamin, methylmalonic acid, and homocysteine testing // Blood. 2005. V. 105. № 3. P. 978. https://doi.org/10.1182/blood-2004-04-1641
  219. Sospedra M., Martin R. Immunology of multiple sclerosis // Annu. Rev. Immunol. 2005. V. 23. P. 683. https://doi.org/10.1146/annurev.immunol.23.021704.115707
  220. Spector R. Niacin and niacinamide transport in the central nervous system. In vivo studies // J. Neurochem. 1979. V. 33. № 4. P. 895. https://doi.org/10.1111/j.1471-4159.1979.tb09919.x
  221. Spector R. Vitamin transport diseases of brain: Focus on folates, thiamine and riboflavin // Brain Disord. Ther. 2014. V. 3. № 2. P. 1.
  222. Sriram K., Manzanares W., Joseph K. Thiamine in nutrition therapy // Nutr. Clin. Pract. 2012. V. 27. № 1. P. 41. https://doi.org/10.1177/0884533611426149
  223. Stankiewicz J., Panter S.S., Neema M. et al. Iron in Chronic Brain Disorders: Imaging and Neurotherapeutic Implications // Neurotherapeutics. 2007. V. 4. № 3. P. 371. https://doi.org/10.1016/j.nurt.2007.05.006
  224. Stein E.D., Diamond J.M. Do dietary levels of pantothenic acid regulate its intestinal uptake in mice? // J. Nutr. 1989. V. 119. № 12. P. 1973. https://doi.org/10.1093/jn/119.12.1973
  225. Steinert R.E., Sadabad M.S., Harmsen H.J.M., Weber P. The prebiotic concept and human health: a changing landscape with riboflavin as a novel prebiotic candidate? // Eur. J. Clin. Nutr. 2016. V. 70. № 12. P. 1348. https://doi.org/10.1038/ejcn.2016.119
  226. Steinert R.E., Lee Y.-K., Sybesma W. Vitamins for the Gut Microbiome // Trends Mol. Med. 2019. V. 26. № 2. P. 137. https://doi.org/10.1016/j.molmed.2019.11.005
  227. Stephenson E., Nathoo N., Mahjoub Y., Dunn J., Yong V.W. Iron in multiple sclerosis: roles in neurodegeneration and repair // Nat. Rev. Neurol. 2014. V. 10. № 8. P. 459. https://doi.org/10.1038 / nrneurol.2014.118
  228. Street H.R., Cowgill G.R., Zimmerman H.M. Some Observations of Vitamin B6 Deficiency in the Dog: Three Figures // J. Nutrition. 1941. V. 21. № 3. P. 275. https://doi.org/10.1093/jn/21.3.275
  229. Subramanian V.S., Subramanya S.B., Ghosal A., Said H.M. Chronic alcohol feeding inhibits physiological and molecular parameters of intestinal and renal riboflavin transport // Am. J. Physiol. Cell Physiol. 2013. V. 305. № 5. P. C539. https://doi.org/10.1152/ajpcell.00089.2013
  230. Subramanian V.S., Lambrecht N., Lytle C., Said H.M. Conditional (intestinal-specific) knockout of the riboflavin transporter-3 (RFVT-3) impairs riboflavin absorption // Am. J. Physiol. Gastrointest. Liver Physiol. 2016. V. 310. № 4. P. G285. https://doi.org/10.1152/ajpgi.00340.2015
  231. Swanson K.V., Deng M., Ting J.P.-Y. The NLRP3 inflammasome: molecular activation and regulation to therapeutics // Nat. Rev. Immunol. 2019. V. 19. № 8. P. 477. https://doi.org/10.1038/s41577-019-0165-0
  232. Teunissen C.E., Killestein J., Kragt J.J. et al. Serum homocysteine levels in relation to clinical progression in multiple sclerosis // J. Neurol. Neurosurg. Psychiatry. 2008. V. 79. № 12. P. 1349. https://doi.org/10.1136/jnnp.2008.151555
  233. Thakur K., Tomar S.K., De S. Lactic acid bacteria as a cell factory for riboflavin production // Microb. Biotechnol. 2016. V. 9. № 4. P. 441. https://doi.org/10.1111/1751-7915.12335
  234. Thakur K., Tomar S.K., Singh A.K., Mandal S., Arora S. Riboflavin and health: A review of recent human research // Crit. Rev. Food Sci. Nutr. 2017. V. 57. № 17. P. 3650. https://doi.org/10.1080/10408398.2016.1145104
  235. Tourbah A., Lebrun-Frenay C., Edan G. el al. MD1003 (high-dose biotin) for the treatment of progressive multiple sclerosis: a randomised, double-blind, placebo-controlled study // Mult. Scler. 2016. V. 22. № 13. P. 1719. https://doi.org/10.1177/1352458516667568
  236. Uchida Y., Ito K., Ohtsuki S. et al. Major involvement of Na+-dependent multivitamin transporter (SLC5A6/SMVT) in uptake of biotin and pantothenic acid by human brain capillary endothelial cells // J. Neurochem. 2015. V. 134. № 1. P. 97. https://doi.org/10.1111/jnc.13092
  237. Uebanso T., Yoshimoto A., Aizawa S. et al. Glycolate is a Novel Marker of Vitamin B 2 Deficiency Involved in Gut Microbe Metabolism in Mice // Nutrients. 2020. V. 12. № 3. P. 736. https://doi.org/10.3390/nu12030736
  238. Ueland P.M., Ulvik A., Rios-Avila L., Midttun Ø., Gregory J.F. Direct and functional biomarkers of vitamin B6 status // Annu. Rev. Nutr. 2015. V. 35. P. 33. https://doi.org/10.1146/annurev-nutr-071714-034330
  239. Vagianos K., Bector S., McConnell J., Bernstein C.N. Nutrition assessment of patients with inflammatory bowel disease // JPEN J. Parenter. Enteral. Nutr. 2007. V. 31. № 4. P. 311. https://doi.org/10.1177/0148607107031004311
  240. van Horssen J., Schreibelt G., Drexhage J. et al. Severe oxidative damage in multiple sclerosis lesions coincides with enhanced antioxidant enzyme expression // Free Radic. Biol. Med. 2008. V. 45. № 12. P. 1729. https://doi.org/10.1016/j.freeradbiomed.2008.09.023
  241. van Rensburg S.J., Kotze M.J., Hon D. et al. Iron and the folate-vitamin B12-methylation pathway in multiple sclerosis // Metab. Brain Dis. 2006. V. 21. № 2–3. P. 121. https://doi.org/10.1007/s11011-006-9019-0
  242. Vernau K., Napoli E., Wong S. et al. Thiamine Deficiency-Mediated Brain Mitochondrial Pathology in A laskan H uskies with Mutation in SLC19A3. 1 // Brain Pathol. 2015. V. 25. № 4. P. 441. https://doi.org/10.1111/bpa.12188
  243. Virk B., Jia J., Maynard C.A. et al. Folate Acts in E. coli to Accelerate C. elegans Aging Independently of Bacterial Biosynthesis // Cell Rep. 2016. V. 14. № 7. P. 1611. https://doi.org/10.1016/j.celrep.2016.01.051
  244. Vrethem M., Mattsson E., Hebelka H. et al. Increased plasma homocysteine levels without signs of vitamin B12 deficiency in patients with multiple sclerosis assessed by blood and cerebrospinal fluid homocysteine and methylmalonic acid // Mult. Scler. 2003. V. 9. № 3. P. 239. https://doi.org/10.1191/1352458503ms918oa
  245. Vrolijk M.F., Opperhuizen A., Jansen E.H.J.M. et al. The vitamin B6 paradox: Supplementation with high concentrations of pyridoxine leads to decreased vitamin B6 function // Toxicol. in Vitro. 2017. V. 44. P. 206. https://doi.org/10.1016/j.tiv.2017.07.009
  246. Wade D.T., Young C.A., Chaudhuri K.R., Davidson D.L.W. A randomised placebo controlled exploratory study of vitamin B-12, lofepramine, and L-phenylalanine (the “Cari Loder regime”) in the treatment of multiple sclerosis // J. Neurol. Neurosurg. Psychiatry. 2002. V. 73. № 3. P. 246. https://doi.org/10.1136/jnnp.73.3.246
  247. Wang X., Wang J., Rao B., Deng L. Gut flora profiling and fecal metabolite composition of colorectal cancer patients and healthy individual // Exp. Ther. Med. 2022. V. 23. № 4. P. 250. https://doi.org/10.3892/etm.2022.11175
  248. Weinstein S.J., Hartman T.J., Stolzenberg-Solomon R. et al. Null association between prostate cancer and serum folate, vitamin B(6), vitamin B(12), and homocysteine // Cancer Epidemiol. Biomarkers Prev. 2003. V. 12. P. 1271. https://pubmed.ncbi.nlm.nih.gov/14652294/
  249. WHO/FAO. Vitamin and Mineral Requirements in Human Nutrition. 2nd ed. Report of a joint WHO/FAO Expert Consultation, Bangkok, Thailand 1998. Geneva: World Health Organization/Rome: Food and Agriculture Organization of the United Nations (2004). https://www.fao.org/3/y2809e/y2809e.pdf
  250. Wostmann B.S. The germfree animal in nutritional studies // Ann. Rev. Nutr. 1981. V. 1. P. 257. https://doi.org/10.1146/annurev.nu.01.070181.001353
  251. Yao Y., Yonezawa A., Yoshimatsu H. et al. Identification and comparative functional characterization of a new human riboflavin transporter hRFT3 expressed in the brain // J. Nutr. 2010. V. 140. № 7. P. 1220. https://doi.org/10.3945/jn.110.122911
  252. Yoshii K., Hosomi K., Sawane K., Kunisawa J. Metabolism of Dietary and Microbial Vitamin B Family in the Regulation of Host Immunity // Front. Nutr. 2019. V. 6. P. 48. https://doi.org/10.3389/fnut.2019.00048
  253. Zempleni J., Galloway J.R., McCormick D.B. The metabolism of riboflavin in female patients with liver cirrhosis // Am. J. Clin. Nutr. 1996. V. 63. № 3. P. 54.
  254. Zhang J., Chen J., Li Y. et al. Niaspan treatment improves neurological functional recovery in experimental autoimmune encephalomyelitis mice // Neurobiol. Dis. 2008. V. 32. № 2. P. 273. https://doi.org/10.1016/j.nbd.2008.07.01
  255. Zhang Y., Rodionov D.A., Gelfand M.S., Gladyshev V.N. Comparative genomic analyses of nickel, cobalt and vitamin B12 utilization // BMC Genomics. 2009. V. 10. P. 78. https://doi.org/10.1186/1471-2164-10-78
  256. Zhong W., Li Q., Zhang W. et al. Modulation of Intestinal Barrier and Bacterial Endotoxin Production Contributes to the Beneficial Effect of Nicotinic Acid on Alcohol-Induced Endotoxemia and Hepatic Inflammation in Rats // Biomolecules. 2015. V. 5. № 4. P. 2643. https://doi.org/10.3390/biom5042643
  257. Zhu Y., He Z.-Y., Liu H.-N. Meta-analysis of the relationship between homocysteine, vitamin B12, folate, and multiple sclerosis // J. Clin. Neurosci. 2011. V. 18. № 7. P. 933. https://doi.org/10.1016 / j.jocn.2010.12.022
  258. Zoetendal E.G., Raes J., van den Bogert B. et al. The human small intestinal microbiota is driven by rapid uptake and conversion of simple carbohydrates // ISME J. 2012. V. 6. № 7. P. 1415. https://doi.org/10.1038/ismej.2011.212

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (7KB)
3.

Download (8KB)
4.

Download (4KB)
5.

Download (5KB)
6.

Download (4KB)
7.

Download (7KB)
8.

Download (9KB)
9.

Download (30KB)

Copyright (c) 2023 И.Н. Абдурасулова, А.В. Дмитриев

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies