Association of polymorphism of genes in the xenobiotic biotransformation system with early first pregnancy loss in a large industrial region

Capa
  • Autores: Shramko S.1, Matoshin S.1, Gulyaeva O.2, Samus I.3
  • Afiliações:
    1. Novokuznetsk State Institute of Advanced Medical Training, Branch of Russian Medical Academy of Continuing Professional Education, Ministry of Health of the Russian Federation
    2. Research Institute for Complex Problems of Hygiene and Occupational Diseases, Ministry of Science and Higher Education of the Russian Federation
    3. Research Institute for Complex Issues of Cardiovascular Diseases, Ministry of Science and Higher Education of the Russian Federation
  • Edição: Nº 8 (2024)
  • Páginas: 58-68
  • Seção: Original Articles
  • URL: https://journals.rcsi.science/0300-9092/article/view/264195
  • DOI: https://doi.org/10.18565/aig.2024.91
  • ID: 264195

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Relevance: The 15–20-fold increase in the number of missed miscarriages in Novokuznetsk over the past 25 years amid deteriorating environmental conditions is of great public health concern.

Objective: To conduct a molecular genetic analysis of gene polymorphisms in the xenobiotic metabolism enzyme system, specifically focusing on CYP1A1 (3798 A>G rs4646903), CYP1A2 (-163 A>C, rs762551), GSTM1 (deletion), and GSTT1 (deletion), as potential genetic risk factors for early first pregnancy loss among women living in a large industrial region.

Materials and methods: This case-control study included 358 primigravida women, matched for age, residing in a large industrial region from 2021 to 2023. Among them, 186 had normal births, while 172 had missed miscarriages before the 12th week of gestation. Gene polymorphisms in the xenobiotic biotransformation system (glutathione-S-transferases and cytochrome P450) were examined using venous blood samples from 102 women (53 with normal births and 49 with missed miscarriages).

Results: Women with normal childbirth were significantly more likely to have the AA genotype of CYP1A1 and the normal genotypes of GSTM1 and GSTT1 (p=0.016 and p=0.002, respectively). In contrast, patients with missed miscarriages had the AG genotype of CYP1A1 (p=0.046), the AA genotype of CYP1A2 (p=0.03), and deletion polymorphisms in GSTM1 and GSTT1 (p<0.001 and p=0.004, respectively).

Conclusion: The combination of the AG genotype of CYP1A1 and the AA genotype of CYP1A2, along with deletion polymorphisms in GSTM1 and GSTT1, is associated with an increased risk of miscarriage. The findings of this study can be utilized for biological optimization, career guidance, and the prevention of missed miscarriages among women living in large industrial regions.

Sobre autores

Svetlana Shramko

Novokuznetsk State Institute of Advanced Medical Training, Branch of Russian Medical Academy of Continuing Professional Education, Ministry of Health of the Russian Federation

Autor responsável pela correspondência
Email: shramko_08@mail.ru
ORCID ID: 0000-0003-1299-165X

Dr. Med. Sci., Associate Professor, Professor at the Department of Obstetrics and Gynecology

Rússia, Novokuznetsk

Sergey Matoshin

Novokuznetsk State Institute of Advanced Medical Training, Branch of Russian Medical Academy of Continuing Professional Education, Ministry of Health of the Russian Federation

Email: matoshin94@bk.ru
ORCID ID: 0000-0002-2805-6829

Obstetrician-Gynecologist, PP Student at the Department of Obstetrics and Gynecology

Rússia, Novokuznetsk

Olga Gulyaeva

Research Institute for Complex Problems of Hygiene and Occupational Diseases, Ministry of Science and Higher Education of the Russian Federation

Email: Gulyaich1973@mail.ru
ORCID ID: 0000-0003-2225-6923

Senior Researcher at the Laboratory for Molecular-Genetic and Experimental Researches

Rússia, Novokuznetsk

Irina Samus

Research Institute for Complex Issues of Cardiovascular Diseases, Ministry of Science and Higher Education of the Russian Federation

Email: stat-for-you@yandex.ru
ORCID ID: 0000-0002-3293-5746

PhD, Senior Researcher

Rússia, Kemerovo

Bibliografia

  1. Ткаченко А.А. Социально-экономическая оценка развития демографической ситуации в России. Социально-трудовые исследования. 2021; 4(45): 89-97. [Tkachenko A.A. Socio-economic assessment of the development of the demographic situation in Russia. Social and labor research. 2021; 4(45): 89-97. (in Russian)]. https://dx.doi.org/10.34022/2658-3712-2021-45-4-89-97.
  2. Федеральная служба государственной статистики. Естественное движение населения РФ за 2021 год (статистический бюллетень). 2022. Доступно по: https://rosstat.gov.ru/compendium/document/13269 [Federal State Statistics Service. Natural movement of the population of the Russian Federation for 2021 (Statistical Bulletin). 2022. Available at: https:// rosstat.gov.ru/compendium/document/13269 (in Russian)].
  3. Федеральная служба государственной статистики. Естественное движение населения Кузбасса. 2022. Доступно по: https://42.rosstat.gov.ru/storage/mediabank/ЕДН%20и%20миграция%20в%20Кузбассе%20_%20декабрь_2022%20(3).pdf [Federal State Statistics Service. The natural movement of the Kuzbass population. 2022. Available at: https://42.rosstat.gov.ru/storage/mediabank/ЕДН%20и%20миграция%20в%20Кузбассе%20_%20декабрь_2022%20(3).pdf (in Russian)].
  4. Chichester M., Harding K.M. Early pregnancy loss: invisible but real. Nursing. 2021; 51(12) 28-32. https://dx.doi.org/10.1097/ 01.NURSE.0000800080.92781.c5.
  5. The long, good life. Demographics and economic well-being. Finance & Development. A quarterly publication of the International Monetary Fund. 2020; 57(1). https://dx.doi.org/10.5089/9781513528861.022.
  6. Олина А.А. Неразвивающаяся беременность и гиперпролактринемия. Есть ли место растительным препаратам в терапии? РМЖ. Мать и дитя. 2020; 3(2): 64-9. [Olina A.A. Non-developing pregnancy and hyperprolactrinemia. Is there a place for herbal medicines in therapy? RMJ. Mother and child. 2020; 3(2): 64-69. (in Russian)]. https://dx.doi.org/10.32364/ 2618-8430-2020-3-2-64-69.
  7. Олина А.А., Садыкова Г.К., Галинова И.В. Структура репродуктивных потерь. Пермский медицинский журнал. 2017; 34(6): 59-66. [Olina A.A., Sadykova G.K., Galinova I.V. Structure of reproductive losses. Perm Medical Journal. 2017; 34(6): 59-66. (in Russian)]. https://dx.doi.org/10.17816/pmj34659%66.
  8. Междисциплинарная ассоциация специалистов репродуктивной медицины (МАРС). Неразвивающаяся беременность в анамнезе: реабилитация и подготовка к следующей гестации. Методические рекомендации МАРС. Версия 2.0. М.: Редакция журнала StatusPraesens; 2021. 68 с. [Interdisciplinary Association of Reproductive Medicine Specialists (MARS). History of non-developing pregnancy: rehabilitation and preparation for the next gestation. MARS Guidelines. Version 2.0. Moscow: StatusPraesens; 2021. 68 p. (in Russian)].
  9. Министерство здравоохранения Российской Федерации. Выкидыш (самопроизвольный аборт). Клинические рекомендации. 2021. 25 с. [Ministry of Health of the Russian Federation. Miscarriage (spontaneous abortion). Clinical guidelines. 2021. 25 p. (in Russian)].
  10. Беспалова О.Н. Генетика невынашивания беременности. Журнал акушерства и женских болезней. 2007; 1: 81-95. [Bespalova O.N. Genetics of pregnancy miscarriage. Journal of Obstetrics and Women's Diseases. 2007; 1: 81-95. (in Russian)].
  11. Liu B., Lu X., Jiang A., Lv Y., Zhang H., Xu B. Influence of maternal endocrine disrupting chemicals exposure on adverse pregnancy outcomes: a systematic review and meta-analysis. Ecotoxicol. Environ. Saf. 2024; 270: 115851. https://dx.doi.org/10.1016/j.ecoenv.2023.115851.
  12. Шабалдин А.В., Глебова Л.А., Бачина А.В., Цепокина А.В., Счастливцев Е.Л., Потапов В.П. Сравнительная характеристика встречаемости различных врожденных пороков развития плода с позиции оценки экологической опасности в крупном промышленном центре. Мать и дитя в Кузбассе. 2014; 4(59): 19-24. [Shabaldin A.V., Glebova L.A., Bachina A.V., Cepokina A.V., Schastlivcev E.L., Potapov V.P. Comparative characteristics of the incidence of various congenital malformations of the fetus from the perspective of assessing environmental hazards in the large industrial center. Mother and Child in Kuzbass. 2014; 4(59): 19-24. (in Russian)].
  13. Чурносов М.И., Полякова И.С., Пахомов С.П., Орлова В.С. Молекулярные и генетические механизмы биотрансформации ксенобиотиков. Актуальные проблемы медицины. 2011; 15(16(111)): 223-8. [Churnosov M.I., Poliakova I.S., Pachomov S.P., Orlova V.S. Molecular and genetic mechanisms of xenobiotic biotransformation. Challenges in modern medicine. 2011; 15(16(111)): 223-8. (in Russian)].
  14. Гуляева Л.Ф., Вавилин В.А., Ляхович В.В. Ферменты биотрансформации ксенобиотиков в химическом канцерогенезе. Новосибирск: серия «Экология»; 2000. 85c. [Gulyaeva L.F., Vavilin V.A., Lyakhovich V.V. Xenobiotic biotransformation enzymes in chemical cancerogenesis. Novosibirsk: seriya «Ekologiya»; 2000; 85 p. (in Russian)].
  15. Супрун С.В., Кудряшова О.С., Наговицына Е.Б., Власова М.А., Морозова О.Н. Роль генов детоксикации в формировании осложнений гестационного процесса у женщин. Таврический медико-биологический вестник. 2017; 20(2-2): 154-9. [Suprun S.V., Kudryashova O.S., Nagovicyna E.B., Vlasova M.A., Morozova O.N. The role of detoxification genes in the formation of complications of the gestational process in women. Tauride Medical and Biological Bulletin. 2017; 20(2-2): 154-9. (in Russian)].
  16. Гордеева Л.А., Воронина Е.Н., Глушков А.Н. Генетические особенности метаболизма ксенобиотиков и предрасположенность к патологии беременности. Часть 1. Медицина в Кузбассе. 2016; 15(2): 8-16. [Gordeeva L.A., Voronina E.N., Glushkov A.N. Genetic features of xenobiotic metabolism and susceptibility to the pathology of pregnancy. Part 1. Medicine in Kuzbass. 2016; 15(2): 8-16. (in Russian)].
  17. Kobayashi S., Sata F., Sasaki S., Ban S., Miyashita C., Okada E. et al. Maternal genetic polymorphisms and unexplained recurrent miscarriage: a systematic review and meta-analysis. Clin. Genet 2017; 91(2): 265-284. https:// dx.doi.org/10.1111/cge.12910.
  18. Гордеева Л.А., Попова О.С., Воронина Е.Н., Шаталина И.В., Оленникова Р.В., Нерсесян С.Л., Филипенко М.Л., Глушков А.Н. Ассоциации полиморфизма генов ферментов биотрансформации ксенобиотиков с невынашиванием беременности в ранние сроки. Молекулярная медицина. 2017; 15(3): 37-44. [Gordeeva L.A., Popova O.S., Voronina E.N., Shatalina I.V., Olennikova R.V., Nersesyan S.L., Filipenko M.L., Glushkov A.N. Association of gene polymorphisms of xenobiotics-metabolizing enzymes with the recurrent miscarriage. Molecular Medicine. 2017; 15(3): 37-44. (in Russian)].
  19. Маниатис Т., Фрич Э., Сэмбрук Дж. Молекулярное клонирование. М.: Мир; 1984. 480 с. [Maniatis T., Frich E., Sembruk Dzh. Molecular cloning. Moscow: Mir; 1984. 480 p. (in Russian)].
  20. Кутихин А.Г., Южалин А.Е., Понасенко А.В. Современные тенденции статистической обработки данных и представления результатов в кандидатных генетико-эпидемиологических исследованиях. Фундаментальная и клиническая медицина. 2017; 2(2): 77-82. [Kutihin A.G., Yuzhalin A.E., Ponasenko A.V. Current trends in statistical data processing and presentation of results in candidate genetic and epidemiological studies. Fundamental and Clinical Medicine. 2017; 2(2): 77-82. (in Russian)]. https:// dx.doi. org/10.23946/2500-0764-2017-2-2-77-82.
  21. Tracy T.S., Venkataramanan R., Glover D.D., Caritis S.N. Temporal changes in drug metabolism (CYP1A2, CYP2D6 and CYP3A activity) during pregnansy. Am. J. Obstet Gynecol. 2005; 192(2): 633-9. https://dx.doi.org/10.1016/ j.ajog.2004.08.030.
  22. Uittenboogaard A., Neutel C.L.G., Ket J.C.F., Njuguna F., Huitema A.D.R., Kaspers G.J.L. et al. Pharmacogenomics of vincristine-induced peripheral neuropathy in children with cancer: a systematic review and meta-analysis. Cancers (Basel). 2022; 14(3): 612. https://dx.doi.org/10.3390/ cancers14030612.
  23. Kukal S., Thakran S., Kanojia N., Yadav S., Mishra M.K., Guin D. et al. Genic-intergenic polymorphisms of CYP1A genes and their clinical impact. Gene. 2023; 857: 147171. https://dx.doi.org/10.1016/ j.gene.2023.147171.
  24. Saijo Y., Sata F., Yamada H., Suzuki K., Sasaki S., Kondo T. et al. Ah receptor, CYP1A1, CYP1A2 and CYP1B1 gene polymorphisms are not involved in the risk of recurrent pregnancy loss. Mol. Hum. Reprod. 2004; 10(10): 729-33. https://dx.doi.org/10.1093/molehr/gah09.
  25. Сальникова Л.Е., Замулаева И.А., Белопольская О.Б., Иванова Т.И., Кузнецова Г.И., Саенко А.С., Абилев С.К., Рубанович А.В. Встречаемость TCR-мутантных лимфоцитов у человека в зависимости от генотипов по локусам детоксикации ксенобиотиков. Экологическая генетика человека. 2010; 8(2): 18-23. [Sal'nikova L.E., Zamulaeva I.A., Belopol'skaya O.B., Ivanova T.I., Kuznetsova G.I., Saenko A.S., Abilev S.K., Rubanovich A.V. Frequency of TCR mutant human lymphocytes depending on genotypes by loci of xenobiotics detoxication. Ecological Genetics. 2010; 8(2): 18-23. (in Russian)].
  26. Hayes J.D., Flanagan J.U., Jowsey I.R. Glutathione transferases. Ann. Rev. Pharmacol. Toxicol. 2005; 45: 51-88. https://dx.doi.org/10.1146/ annurev.pharmtox.45.120403.095857.
  27. Van Lieshout E., Knapen M., Lange W. Localization of glutathione S-transferase α and π in human embryonic tissues at 8 weeks gestational age. Hum. Reprod. 1998; 13(5): 1380-6. https://dx.doi.org/10.1093/humrep/13.5.1380.
  28. Hayes J.D., Strange R.C. Glutathione S-transferase polymorphisms and their biological consequences. Pharmacology. 2000; 61(3): 154-66. https:// dx.doi.org/10.1159/000028396.
  29. Hirvonen A., Taylor J.A., Wilcox A., Berkowitz G., Schachter B., Chaparro C. et al. Xenobiotic metabolism genes and the risk of recurrent spontaneous abortion. Epidemiology. 1996; 7(2): 206-8. https://dx.doi.org/10.1097/ 00001648-199603000-00018.
  30. Nair R.R, Khanna A., Singh K. Association of GSTT1 and GSTM1 polymorphisms with early pregnancy loss in an Indian population and a meta-analysis. Reprod. Biomed. Online. 2013; 26(4): 313-22. https://dx.doi.org/10.1016/j.rbmo.
  31. Гуляева О.Н., Жукова А.Г., Казицкая А.С., Лузина Ф.А., Алексеева М.В., Ренге Л.В., Рябов В.А. Степень антропогенной нагрузки, полиморфизм генов системы биотрансформации ксенобиотиков и врожденные пороки развития плода как звенья одной цепи. Гигиена и санитария. 2021; 100(7): 658-62. [Gulyaeva O.N., Zhukova A.G., Kazickaya A.S., Luzina F.A., Alekseeva M.V., Renge L.V., Ryabov V.A. The degree of anthropogenic load, polymorphism of genes of the xenobiotic biotransformation system and congenital malformations of the fetus as links in one chain. Hygiene and Sanitation. 2021; 100(7): 658-62. (in Russian)]. https://dx.doi.org/10.47470/ 0016-9900-2021-100-7-658-662.
  32. Викторова Т.В., Исхакова Г.М. Ассоциация полиморфных вариантов генов глутатион-зависимых ферментов с репродуктивной патологией у женщин. Современные проблемы науки и образования. 2015; 3: 175. [Viktorova T.V., Iskhakova G.M. Association polymorphism of genes of glutathione-dependent enzymes with reproductive pathology in women. Modern Problems of Science and Education. 2015; (3): 175. (in Russian)].

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies