Markers for fetal growth restriction based on the study of the polymorphism of gene regulatory regions
- Авторлар: Gasymova S.R.1, Tyutyunnik V.L.1, Kan N.E.1, Donnikov A.E.1, Borisova A.G.1
-
Мекемелер:
- Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of the Russian Federation
- Шығарылым: № 11 (2024)
- Беттер: 76-82
- Бөлім: Original Articles
- URL: https://journals.rcsi.science/0300-9092/article/view/279264
- DOI: https://doi.org/10.18565/aig.2024.162
- ID: 279264
Дәйексөз келтіру
Аннотация
Objective: To study variants of gene regulatory regions and identify potential markers of fetal growth restriction.
Materials and methods: This study involved the genetic analysis of polymorphic loci of genes associated with thrombophilia, prothrombotic states, folate cycle enzyme disorders, matrix metalloproteinases and their tissue inhibitors, interleukin-1 and-10, as well as laminin and estrogen receptor genes (F2, F5, F7, F13, FGB, ITGA2, ITGB3, PAI-1, MTHFR, MTR, MTRR, MMP9, MMP2, TIMP2, TIMP3, IL10, IL1B, LAMC1, and ESR1) in 110 pregnant women with fetal growth restriction and 272 control patients (without fetal growth restriction). Polymerase chain reaction was used to genotype single nucleotide polymorphisms. The functional effects of polymorphic loci were assessed using HaploReg (for epigenetic effects) and GTEx Portal (for association with gene expression) software.
Results: In the group with fetal growth restriction, the T allele of the polymorphic locus -1296 C>T [rs5749511] of TIMP3 was found to be significantly associated (OR=3.14 (95% CI 1.08–9.13), p=0.03), as was the G allele of the polymorphic locus MTR: 2756 A>G (Asp919Gly) (OR=2.18 (95% CI 1.15–4.13), p=0.02) compared to the control group. A rare allele of the F7 polymorphic locus, 10976 G>A (Arg353Gln), was found to be protective against the development of fetal growth restriction (OR=0.46 (95% CI 0.21–1.01), p=0.05). In the group with fetal growth restriction, accumulation of the rare G allele of the MTRR polymorphic locus: 66 A>G (Ile22Met) was observed; however, the differences with the control group did not reach statistical significance. A statistically significant association was found between the 4G variant of the -675 5G>4G polymorphic locus of the SERPINE1 (PAI-1) gene and early onset fetal growth restriction.
Conclusion: The results of this study suggest that polymorphisms in the regulatory regions of TIMP3, MTR, MTRR, and PAI-1 can be considered potential markers of the risk of fetal growth restriction.
Негізгі сөздер
Толық мәтін
##article.viewOnOriginalSite##Авторлар туралы
Shagane Gasymova
Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of the Russian Federation
Хат алмасуға жауапты Автор.
Email: shagane2501@mail.ru
ORCID iD: 0009-0001-2626-6670
Junior Researcher at the Department of Fetal Medicine, Institute of Obstetrics, Diagnostic Medical Sonographer at the Department of Ultrasound and Functional Diagnostics, Obstetrician-Gynecologist, Academician
Ресей, 117997, Moscow, Ac. Oparin str., 4
Victor Tyutyunnik
Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of the Russian Federation
Email: tioutiounnik@mail.ru
ORCID iD: 0000-0002-5830-5099
SPIN-код: 1963-1359
Scopus Author ID: 56190621500
ResearcherId: B-2364-2015
Professor, Dr. Med. Sci., Leading Researcher at the Center for Scientific and Clinical Research
Ресей, 117997, Moscow, Ac. Oparin str., 4Natalia Kan
Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of the Russian Federation
Email: kan-med@mail.ru
ORCID iD: 0000-0001-5087-5946
SPIN-код: 5378-8437
Scopus Author ID: 57008835600
ResearcherId: B-2370-2015
Professor, Dr. Med. Sci., Deputy Director for Research
Ресей, 117997, Moscow, Ac. Oparin str., 4Andrey Donnikov
Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of the Russian Federation
Email: donnikov@dna-technology.ru
ORCID iD: 0000-0003-3504-2406
PhD, Head of the Laboratory of Molecular Genetic Methods
Ресей, 117997, Moscow, Ac. Oparin str., 4Anastasia Borisova
Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of the Russian Federation
Email: vvv92@list.ru
ORCID iD: 0009-0004-5234-1584
PhD student
Ресей, 117997, Moscow, Ac. Oparin str., 4Әдебиет тізімі
- Alfirevic Z., Stampalija T., Dowswell T. Fetal and umbilical Doppler ultrasound in high-risk pregnancies. Cochrane Database Syst. Rev. 2017; 6(6): CD007529. https://dx.doi.org/10.1002/14651858.CD007529.pub4.
- Министерство здравоохранения Российской Федерации. Недостаточный рост плода, требующий предоставления медицинской помощи матери (задержка роста плода). Клинические рекомендации (протокол лечения). М.; 2022. 71с. [Ministry of Health of the Russian Federation. Insufficient growth of the fetus, requiring the provision of medical care to the mother (fetal growth retardation). Clinical guidelines (treatment protocol). Moscow; 2022. 71p. (in Russian)].
- Pels A., Beune I.M., van Wassenaer-Leemhuis A.G., Limpens J., Ganzevoort W. Early-onset fetal growth restriction: a systematic review on mortality and morbidity. Acta Obstet. Gynecol. Scand. 2020; 99(2): 153-66. https:// dx.doi.org/10.1111/aogs.13702.
- Crispi F., Miranda J., Gratacos E. Long‐term cardiovascular consequences of fetal growth restriction: biology, clinical implications, and opportunities for prevention of adult disease. Am. J. Obstet. Gynecol. 2018; 218(2S): S869-S879. https://dx.doi.org/10.1016/j.ajog.2017.12.012.
- Солдатова Е.Е., Кан Н.Е., Тютюнник В.Л., Волочаева М.В. Задержка роста плода с позиции фетального программирования. Акушерство и гинекология. 2022; 8: 5-10. [Soldatova E.E., Kan N.E., Tyutyunnik V.L., Volochaeva M.V. Fetal growth retardation from the perspective of fetal programming. Obstetrics and Gynecology. 2022; (8): 5-10. (in Russian)]. https://dx.doi.org/10.18565/aig.2022.8.5-10.
- Nowakowska B.A., Pankiewicz K., Nowacka U., Niemiec M., Kozłowski S., Issat T. Genetic background of fetal growth restriction. Int. J. Mol. Sci. 2021; 23(1): 36. https://dx.doi.org/10.3390/ijms23010036.
- Zhai J., Li Z., Zhou Y., Yang X. The role of plasminogen activator inhibitor-1 in gynecological and obstetrical diseases: an update review. J. Reprod. Immunol. 2022; 150: 103490. https://dx.doi.org/10.1016/j.jri.2022.103490.
- Григорьева К.Н., Бицадзе В.О., Хизроева Д.Х., Третьякова М.В., Блинов Д.В., Макацария Н.А., Цибизова В.И., Накаидзе И.А., Гашимова Н.Р., Грандоне Э., Макацария А.Д. Металлопротеиназы как биохимические маркеры патологии беременности. Акушерство, гинекология и репродукция. 2022; 16(1): 38-47. [Grigor’eva K.N., Bitsadze V.O., Khizroeva D.Kh., Tret’yakova M.V., Blinov D.V., Makatsariya N.A., Tsibizova V.I., Nakaidze I.A., Gashimova N.R., Grandone E., Makatsariya A.D. Metalloproteinases as biochemical markers of pregnancy pathology. Obstetrics, Gynecology and Reproduction. 2022; 16(1): 38-47. (in Russian)]. https://dx.doi.org/10.17749/2313-7347/ ob.gyn.rep.2022.275.
- Donmez H.G., Beksac M.S. Association of single nucleotide polymorphisms (4G/5G) of plasminogen activator inhibitor-1 and the risk factors for placenta-related obstetric complications. Blood Coagul. Fibrinolysis. 2023; 34(6): 396-402. https://dx.doi.org/10.1097/MBC.0000000000001242.
- Шостак Д.П., Пашов А.И., Патрушева В.Е., Стуров В.Г., Горбунов А.П. Исследование генов системы гемостаза у беременных в европейской популяции. Сибирское медицинское обозрение. 2018; 2: 5-12. [Shostak D.P., Pashov A.I., Patrusheva V.E., Sturov V.G., Gorbunov A.P. Study of genes of the hemostasis system in pregnant women in the European population. Siberian Medical Review. 2018; (2): 5-12. (in Russian)]. https://dx.doi.org/10.20333/2500136-2018-2-5-12.
- Bernardi F., Castaman G., Pinotti M., Ferraresi P., Di Iasio M.G., Lunghi B. et al. Mutation pattern in clinically asymptomatic coagulation factor VII deficiency. Hum. Mutat. 1996; 8(2): 108-15. https://dx.doi.org/ 10.1002/(SICI)1098-1004(1996)8:2<108::AID-HUMU2>3.0.CO;2-7.
- Schreiber K., Sciascia S., de Groot P.G., Devreese K., Jacobsen S., Ruiz-Irastorza G. et al. Antiphospholipid syndrome. Nat. Rev. Dis. Primers. 2018; 4: 17103. https://dx.doi.org/0.1038/nrdp.2017.103.
- Mihai B.M., Salmen T., Cioca A.M., Bohîlțea R.E. The proper diagnosis of thrombophilic status in preventing fetal growth restriction. Diagnostics (Basel). 2023; 13(3): 512. https://dx.doi.org/10.3390/diagnostics13030512.
- Seferovic M.D., Gupta M.B. Increased umbilical cord PAI-1 levels in placental insufficiency are associated with fetal hypoxia and angiogenesis. Dis. Markers. 2016; 2016: 7124186. https://dx.doi.org/10.1155/2016/7124186.
- Wiklund P.G., Nilsson L., Ardnor S.N., Eriksson P., Johansson L., Stegmayr B. et al. Plasminogen activator inhibitor-1 4G/5G polymorphism and risk of stroke: replicated findings in two nested case-control studies based on independent cohorts. Stroke. 2005; 36(8): 1661-5. https://dx.doi.org/10.1161/01.STR.0000174485.10277.24.
- Kohler H.P., Grant P.J. Plasminogen-activator inhibitor type 1 and coronary artery disease. N. Engl. J. Med. 2000; 342(24): 1792-801. https:// dx.doi.org/10.1056/NEJM200006153422406.
- Ma Z., Paek D., Oh C.K. Plasminogen activator inhibitor-1 and asthma: role in the pathogenesis and molecular regulation. Clin. Exp. Allergy. 2009; 39(8): 1136-44. https://dx.doi.org/10.1111/j.1365-2222.2009.03272.x.
- Laraqui A., Allami A., Carrié A., Coiffard A.S., Benkouka F., Benjouad A. et al. Influence of methionine synthase (A2756G) and methionine synthase reductase (A66G) polymorphisms on plasma homocysteine levels and relation to risk of coronary artery disease. Acta Cardiol. 2006; 61(1): 51-61. https:// dx.doi.org/10.2143/AC.61.1.2005140.
- Furness D.L., Fenech M.F., Khong Y.T., Romero R., Dekker G.A. One-carbon metabolism enzyme polymorphisms and uteroplacental insufficiency. Am. J. Obstet. Gynecol. 2008; 199(3): 276.e1-8. https://dx.doi.org/10.1016/ j.ajog.2008.06.020.
- Burton G.J., Jauniaux E. Pathophysiology of placental-derived fetal growth restriction. Am. J. Obstet. Gynecol. 2018; 218(2S): S745-S761. https:// dx.doi.org/10.1016/j.ajog.2017.11.577.
- Nikolov A., Popovski N. Role of gelatinases MMP-2 and MMP-9 in healthy and complicated pregnancy and their future potential as preeclampsia biomarkers. Diagnostics (Basel). 2021; 11(3): 480. https://dx.doi.org/10.3390/diagnostics11030480.
- Song G., Yan J., Zhang Q., Li G., Chen Z.J. Association of tissue inhibitor of metalloproteinase gene polymorphisms and unexplained recurrent spontaneous abortions in Han Chinese couples. Eur. J. Obstet. Gynecol. Reprod. Biol. 2014; 181: 84-8. https://dx.doi.org/10.1016/j.ejogrb.2014.07.013.
- Konac E., Alp E., Onen H.I., Korucuoglu U., Biri A.A., Menevse S. Endometrial mRNA expression of matrix metalloproteinases, their tissue inhibitors and cell adhesion molecules in unexplained infertility and implantation failure patients. Reprod. Biomed. Online. 2009; 19(3): 391-7. https://dx.doi.org/10.1016/ s1472-6483(10)60174-5.
- Jokimaa V., Oksjoki S., Kujari H., Vuorio E., Anttila L. Altered expression of genes involved in the production and degradation of endometrial extracellular matrix in patients with unexplained infertility and recurrent miscarriages. Mol. Hum. Reprod. 2002; 8(12): 1111-6. https://dx.doi.org/10.1093/molehr/8.12.1111.
- Cruz J.O., Conceição I.M.C.A., Sandrim V.C., Luizon M.R. Comprehensive analyses of DNA methylation of the TIMP3 promoter in placentas from early-onset and late-onset preeclampsia. Placenta. 2022; 117: 118-21. https:// dx.doi.org/10.1016/j.placenta.2021.12.003.
Қосымша файлдар
