Phenotypic profile of peripheral blood mononuclear cells in preeclampsia

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Objective: To investigate the phenotypic profile of mononuclear cells in the peripheral blood of pregnant women with preeclampsia.

Materials and methods: This study included 38 pregnant women. The study group included 20 women (10 with mild preeclampsia and 10 with severe preeclampsia). The control group comprised 18 women with healthy pregnancies. Flow cytometry was used to determine the expression by monocytes and lymphocytes of costimulatory inflammatory factors CD40, CD80, CD86, surface signaling molecules of the "don't eat me" pathway CD24 and CD47, surface costimulatory receptors CD28 and CD152, and Fc receptor CD16.

Results: Lymphocytes in the blood of pregnant women in the study group had increased expression of CD28 and CD16, monocytes had increased expression of CD152 and CD86, and there was a higher content of monocytes expressing CD16 in this group. Correlation analysis showed a relationship between the level of expression of CD152 and CD86 in monocytes and the content of monocytes expressing CD16 in women in both groups.

Conclusion: The relationship between the expression levels of CD16, CD152, and CD86 indicates the possibility of their involvement in the same CD86-mediated signaling pathway leading to the activation of the CD152 receptor, followed by the expression of the CD16 Fc receptor. These findings suggest that these factors may be potential markers for PE.

About the authors

Aleksey M. Krasnyi

Academician V.I. Kulakov National Medical Research Centre of Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Author for correspondence.
Email: alexred@list.ru
ORCID iD: 0000-0001-7883-2702

PhD, Head of the Cytology Laboratory

Russian Federation, Moscow

Natalia E. Kan

Academician V.I. Kulakov National Medical Research Centre of Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: kan-med@mail.ru
ORCID iD: 0000-0001-5087-5946
SPIN-code: 5378-8437
Scopus Author ID: 57008835600
ResearcherId: B-2370-2015

MD, PhD, Deputy Director of Science

Russian Federation, Moscow

Dzhamilia D. Mirzabekova

Academician V.I. Kulakov National Medical Research Centre of Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: Jamilya1705@yandex.ru
ORCID iD: 0000-0002-2391-3334

PhD student

Russian Federation, Moscow

Victor L. Tyutyunnik

Academician V.I. Kulakov National Medical Research Centre of Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: tioutiounnik@mail.ru
ORCID iD: 0000-0002-5830-5099
SPIN-code: 1963-1359
Scopus Author ID: 56190621500
ResearcherId: B-2364-2015

Professor, MD, PhD, Leading Researcher at the Research and Development Service

Russian Federation, Moscow

Ekaterina A. Panasenko

Academician V.I. Kulakov National Medical Research Centre of Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: e_panasenko@oparina4.ru

Researcher at the Cytology Laboratory

Russian Federation, Moscow

Alsu A. Sadekova

Academician V.I. Kulakov National Medical Research Centre of Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: a_sadekova@oparina4.ru
ORCID iD: 0000-0003-4726-7477

PhD, Researcher at the Cytology Laboratory

Russian Federation, Moscow

References

  1. Министерство здравоохранения Российской Федерации. Преэклампсия. Эклампсия. Отеки, протеинурия и гипертензивные расстройства во время беременности, в родах и послеродовом периоде. Федеральные клинические рекомендации (протокол лечения). М.; 2021. 81с. [Ministry of Health of the Russian Federation. Preeclampsia. Eclampsia. Edema, proteinuria and hypertensive disorders during pregnancy, childbirth and the postpartum period. Federal clinical guidelines (treatment protocol). Moscow; 2021. 81p. (in Russian)].
  2. ACOG Practice Bulletin No. 202: Gestational hypertension and preeclampsia. Obstet. Gynecol. 2019; 133(1): 1. https://dx.doi.org/10.1097/AOG.0000000000003018.
  3. Melchiorre K., Giorgione V., Thilaganathan B. The placenta and preeclampsia: villain or victim? Am. J. Obstet. Gynecol. 2022; 226(Suppl. 2): S954-62. https://dx.doi.org/10.1016/j.ajog.2020.10.024.
  4. Yagel S., Cohen S.M., Goldman-Wohl D. An integrated model of preeclampsia: a multifaceted syndrome of the maternal cardiovascular-placental-fetal array. Am. J. Obstet. Gynecol. 2022; 226(Suppl. 2): S963-72. https://dx.doi.org/ 10.1016/j.ajog.2020.10.023.
  5. El-Sayed A.A.F. Preeclampsia: a review of the pathogenesis and possible management strategies based on its pathophysiological derangements. Taiwan. J. Obstet. Gynecol. 2017; 56(5): 593-8. https://dx.doi.org/10.1016/ j.tjog.2017.08.004.
  6. Overton E., Tobes D., Lee A. Preeclampsia diagnosis and management. Best Pract. Res. Clin. Anaesthesiol. 2022; 36(1): 107-21. https://dx.doi.org/10.1016/ j.bpa.2022.02.003.
  7. Callahan M.K., Postow M.A., Wolchok J.D. Targeting T cell co-receptors for cancer therapy. Immunity. 2016; 44(5): 1069-78. https://dx.doi.org/10.1016/ j.immuni.2016.04.023.
  8. Attanasio J., Wherry E.J. Costimulatory and coinhibitory receptor pathways in infectious disease. Immunity. 2016; 44(5): 1052-68. https://dx.doi.org/10.1016/ j.immuni.2016.04.022.
  9. Zhang Q., Vignali D.A. Co-stimulatory and co-inhibitory pathways in autoimmunity. Immunity. 2016; 44(5): 1034-51. https://dx.doi.org/10.1016/ j.immuni.2016.04.017.
  10. Tang M.X., Zhang Y.H., Hu L., Kwak-Kim J., Liao A.H. CD14++ CD16+ HLA-DR+ monocytes in peripheral blood are quantitatively correlated with the severity of pre-eclampsia. Am. J. Reprod. Immunol. 2015; 74(2): 116-22. https://dx.doi.org/10.1111/aji.12389.
  11. Alahakoon T.I., Medbury H., Williams H., Fewings N., Wang X.M., Lee V.W. Characterization of fetal monocytes in preeclampsia and fetal growth restriction. J. Perinat. Med. 2019; 47(4): 434-8. https://dx.doi.org/10.1515/ jpm-2018-0286.
  12. Yeap W.H., Wong K.L., Shimasaki N., Teo E.C., Quek J.K., Yong H.X. et al. CD16 is indispensable for antibody-dependent cellular cytotoxicity by human monocytes. Sci. Rep. 2016; 6: 34310. https://dx.doi.org/10.1038/ srep34310.
  13. Peng Y., Luo G., Zhou J., Wang X., Hu J., Cui Y. et al. CD86 is an activation receptor for NK cell cytotoxicity against tumor cells. PLoS One. 2013; 8(12): e83913. https://dx.doi.org/10.1371/ journal.pone.0083913.
  14. Horton H.M., Bernett M.J., Peipp M., Pong E., Karki S., Chu S.Y. et al. Fc-engineered anti-CD40 antibody enhances multiple effector functions and exhibits potent in vitro and in vivo antitumor activity against hematologic malignancies. Blood. 2010; 116(16): 3004-12. https://dx.doi.org/10.1182/blood-2010-01-265280.
  15. Bradley C.A. CD24 – a novel 'don't eat me' signal. Nat. Rev. Cancer. 2019; 19(10): 541. https://dx.doi.org/10.1038/s41568-019-0193-x.
  16. Hayat S.M.G., Bianconi V., Pirro M., Jaafari M.R., Hatamipour M., Sahebkar A. CD47: role in the immune system and application to cancer therapy. Cell. Oncol. (Dordr.). 2020; 43(1): 19-30. https://dx.doi.org/10.1007/ s13402-019-00469-5.
  17. Barkal A.A., Brewer R.E., Markovic M., Kowarsky M., Barkal S.A., Zaro B.W. et al. CD24 signalling through macrophage Siglec-10 is a target for cancer immunotherapy. Nature. 2019; 572(7769): 392-6. https://dx.doi.org/10.1038/s41586-019-1456-0.
  18. Hattori H., Okano M., Yoshino T., Akagi T., Nakayama E., Saito C. et al. Expression of costimulatory CD80/CD86-CD28/CD152 molecules in nasal mucosa of patients with perennial allergic rhinitis. Clin. Exp. Allergy. 2001; 31(8): 1242-9. https://dx.doi.org/10.1046/ j.1365-2222.2001.01021.x.
  19. Kennedy A., Waters E., Rowshanravan B., Hinze C., Williams C., Janman D. et al. Differences in CD80 and CD86 transendocytosis reveal CD86 as a key target for CTLA-4 immune regulation. Nat. Immunol. 2022; 23(9): 1365-78. https://dx.doi.org/10.1038/s41590-022-01289-w.
  20. Крецу В.Н., Савичева А.М., Ордиянц И.М. Факторы перинатального риска развития преэклампсии у беременных. Акушерство и гинекология: новости, мнения, обучение. 2020; 8(3): 16-9. [Cretsu V.N., Savicheva A.M., Ordiyants I.M. Perinatal risk factors for preeclampsia in pregnant women. Obstetrics and Gynecology: News, Opinions, Training. 2020; 8(3): 16-9. (in Russian)]. https://dx.doi.org/10.24411/2303-9698-2020-13002.
  21. Chaemsaithong P., Sahota D.S., Poon L.C. First trimester preeclampsia screening and prediction. Am. J. Obstet. Gynecol. 2022; 226(Suppl. 2): S1071-97. e2. https://dx.doi.org/10.1016/j.ajog.2020.07.020.
  22. Shen M., Smith G.N., Rodger M., White R.R., Walker M.C., Wen S.W. Comparison of risk factors and outcomes of gestational hypertension and pre-eclampsia. PLoS One. 2017; 12(4): e0175914. https://dx.doi.org/10.1371/journal.pone.0175914.
  23. Борис Д.А., Волгина Н.Е., Красный А.М., Тютюнник В.Л., Кан Н.Е. Прогнозирование преэклампсии по содержанию CD16-негативных моноцитов. Акушерство и гинекология. 2019; 7: 49-55. [Boris D.A., Volgina N.E., Krasnyi A.M., Tyutyunnik V.L., Kan N.E. Prediction of preeclampsia on the couts of CD-16 negative monocytes. Obstetrics and Gynecology. 2019; (7): 49-55. (in Russian)]. https://dx.doi.org/10.18565/ aig.2019.7.49-55.
  24. Oyewole-Said D., Konduri V., Vazquez-Perez J., Weldon S.A., Levitt J.M., Decker W.K. Beyond T-cells: functional characterization of CTLA-4 expression in immune and non-immune cell types. Front. Immunol. 2020; 11: 608024. https://dx.doi.org/10.3389/fimmu.2020.608024.
  25. Tiemann M., Atiakshin D., Samoilova V., Buchwalow I. Identification of CTLA-4-positive cells in the human tonsil. Cells. 2021; 10(5): 1027. https://dx.doi.org/10.3390/cells10051027.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Expression level of CD28 by lymphocytes, CD152 and CD86 by monocytes

Download (70KB)
3. Fig. 2. Spearman correlation coefficient in the main group (A) and comparison group (B). *p<0.05; **p<0.001

Download (87KB)

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».